|
import os
|
|
import gradio as gr
|
|
from random import randint
|
|
from all_models import models
|
|
from datetime import datetime
|
|
from externalmod import gr_Interface_load
|
|
import asyncio
|
|
import os
|
|
from threading import RLock
|
|
lock = RLock()
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
|
|
|
|
now2 = 0
|
|
nb_models=24
|
|
inference_timeout = 300
|
|
MAX_SEED = 2**32-1
|
|
|
|
def split_models(models,nb_models):
|
|
models_temp=[]
|
|
models_lis_temp=[]
|
|
i=0
|
|
for m in models:
|
|
models_temp.append(m)
|
|
i=i+1
|
|
if i%nb_models==0:
|
|
models_lis_temp.append(models_temp)
|
|
models_temp=[]
|
|
if len(models_temp)>1:
|
|
models_lis_temp.append(models_temp)
|
|
return models_lis_temp
|
|
|
|
def split_models_axb(models,a,b):
|
|
models_temp=[]
|
|
models_lis_temp=[]
|
|
i=0
|
|
nb_models=b
|
|
for m in models:
|
|
for j in range(a):
|
|
models_temp.append(m)
|
|
i=i+1
|
|
if i%nb_models==0:
|
|
models_lis_temp.append(models_temp)
|
|
models_temp=[]
|
|
if len(models_temp)>1:
|
|
models_lis_temp.append(models_temp)
|
|
return models_lis_temp , a*b
|
|
|
|
def split_models_8x3(models,nb_models):
|
|
models_temp=[]
|
|
models_lis_temp=[]
|
|
i=0
|
|
nb_models_x3=8
|
|
for m in models:
|
|
models_temp.append(m)
|
|
i=i+1
|
|
if i%nb_models_x3==0:
|
|
models_lis_temp.append(models_temp+models_temp+models_temp)
|
|
models_temp=[]
|
|
if len(models_temp)>1:
|
|
models_lis_temp.append(models_temp+models_temp+models_temp)
|
|
return models_lis_temp
|
|
|
|
"""models_test=split_models_x3(models,nb_models)"""
|
|
"""models_test=split_models(models,nb_models)"""
|
|
models_test , nb_models =split_models_axb(models,2,20)
|
|
|
|
def get_current_time():
|
|
now = datetime.now()
|
|
now2 = now
|
|
current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
|
|
kii = ""
|
|
ki = f'{kii} {current_time}'
|
|
return ki
|
|
|
|
def load_fn_original(models):
|
|
global models_load
|
|
global num_models
|
|
global default_models
|
|
models_load = {}
|
|
num_models = len(models)
|
|
if num_models!=0:
|
|
default_models = models[:num_models]
|
|
else:
|
|
default_models = {}
|
|
for model in models:
|
|
if model not in models_load.keys():
|
|
try:
|
|
m = gr.load(f'models/{model}')
|
|
except Exception as error:
|
|
m = gr.Interface(lambda txt: None, ['text'], ['image'])
|
|
print(error)
|
|
models_load.update({model: m})
|
|
|
|
def load_fn(models):
|
|
global models_load
|
|
global num_models
|
|
global default_models
|
|
models_load = {}
|
|
num_models = len(models)
|
|
if num_models!=0:
|
|
default_models = models[:num_models]
|
|
else:
|
|
default_models = {}
|
|
for model in models:
|
|
if model not in models_load.keys():
|
|
try:
|
|
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
|
except Exception as error:
|
|
m = gr.Interface(lambda txt: None, ['text'], ['image'])
|
|
print(error)
|
|
models_load.update({model: m})
|
|
|
|
|
|
"""models = models_test[1]"""
|
|
|
|
load_fn(models)
|
|
"""models = {}
|
|
load_fn(models)"""
|
|
|
|
|
|
def extend_choices(choices):
|
|
return choices + (nb_models - len(choices)) * ['NA']
|
|
"""return choices + (num_models - len(choices)) * ['NA']"""
|
|
|
|
def extend_choices_b(choices):
|
|
choices_plus = extend_choices(choices)
|
|
return [gr.Textbox(m, visible=False) for m in choices_plus]
|
|
|
|
def update_imgbox(choices):
|
|
choices_plus = extend_choices(choices)
|
|
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
|
|
|
|
def choice_group_a(group_model_choice):
|
|
for m in models_test:
|
|
if group_model_choice==m[1]:
|
|
choice=m
|
|
print(choice)
|
|
return choice
|
|
|
|
def choice_group_b(group_model_choice):
|
|
choice=choice_group_a(group_model_choice)
|
|
choice = extend_choices(choice)
|
|
"""return [gr.Image(label=m, min_width=170, height=170) for m in choice]"""
|
|
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choice]
|
|
|
|
def choice_group_c(group_model_choice):
|
|
choice=choice_group_a(group_model_choice)
|
|
choice = extend_choices(choice)
|
|
return [gr.Textbox(m, visible=False) for m in choice]
|
|
|
|
def choice_group_d(var_Test):
|
|
(gen_button,stop_button,output,current_models, txt_input)=var_Test
|
|
for m, o in zip(current_models, output):
|
|
gen_event = gen_button.click(gen_fn, [m, txt_input], o)
|
|
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
|
|
return gen_event
|
|
|
|
def test_pass(test):
|
|
if test==os.getenv('p'):
|
|
|
|
print("ok")
|
|
return gr.Dropdown(label="test Model", show_label=False, choices=list(models_test) , allow_custom_value=True)
|
|
else:
|
|
print("nop")
|
|
return gr.Dropdown(label="test Model", show_label=False, choices=list([]) , allow_custom_value=True)
|
|
|
|
|
|
|
|
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
|
|
from pathlib import Path
|
|
kwargs = {}
|
|
if height is not None and height >= 256: kwargs["height"] = height
|
|
if width is not None and width >= 256: kwargs["width"] = width
|
|
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
|
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
|
noise = ""
|
|
if seed >= 0: kwargs["seed"] = seed
|
|
else:
|
|
rand = randint(1, 500)
|
|
for i in range(rand):
|
|
noise += " "
|
|
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
|
|
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
|
await asyncio.sleep(0)
|
|
try:
|
|
result = await asyncio.wait_for(task, timeout=timeout)
|
|
except (Exception, asyncio.TimeoutError) as e:
|
|
print(e)
|
|
print(f"Task timed out: {model_str}")
|
|
if not task.done(): task.cancel()
|
|
result = None
|
|
if task.done() and result is not None:
|
|
with lock:
|
|
png_path = "image.png"
|
|
result.save(png_path)
|
|
image = str(Path(png_path).resolve())
|
|
return image
|
|
return None
|
|
|
|
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
|
|
if model_str == 'NA':
|
|
return None
|
|
try:
|
|
loop = asyncio.new_event_loop()
|
|
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
|
height, width, steps, cfg, seed, inference_timeout))
|
|
except (Exception, asyncio.CancelledError) as e:
|
|
print(e)
|
|
print(f"Task aborted: {model_str}")
|
|
result = None
|
|
finally:
|
|
loop.close()
|
|
return result
|
|
|
|
def gen_fn_original(model_str, prompt):
|
|
if model_str == 'NA':
|
|
return None
|
|
noise = str(randint(0, 9999))
|
|
try :
|
|
m=models_load[model_str](f'{prompt} {noise}')
|
|
except Exception as error :
|
|
print("error : " + model_str)
|
|
print(error)
|
|
m=False
|
|
|
|
return m
|
|
|
|
def make_me():
|
|
|
|
with gr.Row():
|
|
|
|
|
|
with gr.Column(scale=4):
|
|
with gr.Group():
|
|
txt_input = gr.Textbox(label='Your prompt:', lines=3)
|
|
with gr.Accordion("Advanced", open=False, visible=True):
|
|
neg_input = gr.Textbox(label='Negative prompt:', lines=1)
|
|
with gr.Row():
|
|
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
|
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
|
with gr.Row():
|
|
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
|
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
|
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
|
|
|
|
|
gen_button = gr.Button('Generate images', scale=3)
|
|
stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
|
|
|
gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
"""output = [gr.Image(label=m, min_width=170, height=170) for m in default_models]
|
|
current_models = [gr.Textbox(m, visible=False) for m in default_models]"""
|
|
"""choices=[models_test[0][0]]"""
|
|
choices=models_test[0]
|
|
"""output = [gr.Image(label=m, min_width=170, height=170) for m in choices]
|
|
current_models = [gr.Textbox(m, visible=False) for m in choices]"""
|
|
output = update_imgbox([choices[0]])
|
|
current_models = extend_choices_b([choices[0]])
|
|
|
|
for m, o in zip(current_models, output):
|
|
|
|
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
|
|
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o])
|
|
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
|
|
"""with gr.Accordion('Model selection'):
|
|
model_choice = gr.CheckboxGroup(models, label=f' {num_models} different models selected', value=default_models, multiselect=True, max_choices=num_models, interactive=True, filterable=False)
|
|
model_choice.change(update_imgbox, (gen_button,stop_button,group_model_choice), output)
|
|
model_choice.change(extend_choices, model_choice, current_models)
|
|
"""
|
|
|
|
with gr.Accordion("test", open=True):
|
|
"""group_model_choice = gr.Dropdown(label="test Model", show_label=False, choices=list(models_test) , allow_custom_value=True)"""
|
|
group_model_choice = gr.Dropdown(label="test Model", show_label=False, choices=list([]) , allow_custom_value=True)
|
|
group_model_choice.change(choice_group_b,group_model_choice,output)
|
|
group_model_choice.change(choice_group_c,group_model_choice,current_models)
|
|
"""group_model_choice.change(choice_group_d,(gen_button,stop_button,output,current_models,txt_input),gen_event)"""
|
|
with gr.Row():
|
|
|
|
txt_input_p = gr.Textbox(label='test', lines=1)
|
|
|
|
|
|
test_button = gr.Button('test')
|
|
test_button.click(test_pass,txt_input_p,group_model_choice)
|
|
with gr.Row():
|
|
gr.HTML("""
|
|
<div class="footer">
|
|
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier!
|
|
</p>
|
|
""")
|
|
|
|
|
|
js_code = """
|
|
|
|
|
|
console.log('ghgh');
|
|
|
|
"""
|
|
|
|
|
|
with gr.Blocks(theme="Nymbo/Nymbo_Theme", fill_width=True, css="div.float.svelte-1mwvhlq { position: absolute; top: var(--block-label-margin); left: var(--block-label-margin); background: none; border: none;}") as demo:
|
|
gr.Markdown("<script>" + js_code + "</script>")
|
|
make_me()
|
|
|
|
|
|
|
|
|
|
demo.queue(default_concurrency_limit=200, max_size=200)
|
|
demo.launch(max_threads=400)
|
|
|