Spaces:
Running
Running
# for Zero GPU Spaces compatibility | |
import spaces | |
def dummy_gpu(): | |
pass | |
import gradio as gr | |
import numpy as np | |
import cv2 | |
import torch | |
import onnxruntime as ort | |
from optimum.onnxruntime import ORTModel | |
from ultralytics import YOLO | |
import os | |
from typing import Tuple, List | |
import subprocess | |
def install_cuda_toolkit(): | |
print("Installing CUDA Toolkit.") | |
#CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" | |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" | |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
os.environ["CUDA_HOME"], | |
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], | |
) | |
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" | |
#install_cuda_toolkit() | |
# Configuration - UPDATE THESE VALUES | |
MODEL_PT_PATH = "model.pt" # Your trained PyTorch model | |
MODEL_ONNX_PATH = "model.onnx" # Output ONNX model name | |
INPUT_SIZE = 640 # Must match training size | |
CLASS_NAMES = ["class0", "class1"] # Your actual class names | |
CONF_THRESHOLD = 0.5 # Confidence threshold | |
IOU_THRESHOLD = 0.45 # NMS IoU threshold | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
session_options = ort.SessionOptions() | |
session_options.log_severity_level = 0 | |
def convert_pt_to_onnx(): | |
"""Convert PyTorch model to ONNX format if not exists""" | |
print(f'Converting model on {"cuda" if torch.cuda.is_available() else "cpu"}') | |
if not os.path.exists(MODEL_ONNX_PATH): | |
print("Converting PyTorch model to ONNX...") | |
try: | |
# Load trained YOLO model | |
model = YOLO(MODEL_PT_PATH) | |
# Export to ONNX with correct parameters | |
model.export( | |
format="onnx", | |
imgsz=INPUT_SIZE, | |
opset=12, | |
simplify=True, | |
dynamic=False, | |
half=False # Disable for maximum compatibility | |
) | |
# Rename exported model (Ultralytics uses default name) | |
if os.path.exists("yolov8n.onnx"): | |
os.rename("yolov8n.onnx", MODEL_ONNX_PATH) | |
print("ONNX conversion successful!") | |
except Exception as e: | |
raise RuntimeError(f"ONNX conversion failed: {str(e)}") | |
def load_onnx_model() -> ort.InferenceSession: | |
"""Initialize ONNX runtime session""" | |
print(f'Loading model on {"cuda" if torch.cuda.is_available() else "cpu"}') | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if DEVICE != "cpu" else ['CPUExecutionProvider'] | |
try: | |
#return ort.InferenceSession(MODEL_ONNX_PATH, providers=providers, session_options=session_options, export=True) | |
return ORTModel.load_model(MODEL_ONNX_PATH, provider='CUDAExecutionProvider' if DEVICE != "cpu" else 'CPUExecutionProvider', session_options=session_options) | |
except Exception as e: | |
raise RuntimeError(f"Failed to load ONNX model: {str(e)}") | |
# Initialize model | |
convert_pt_to_onnx() | |
ort_session = load_onnx_model() | |
print("Available Providers: ", ort_session._providers) | |
#assert "CUDAExecutionProvider" in ort_session._providers | |
def letterbox_image(image: np.ndarray) -> Tuple[np.ndarray, float, Tuple[int, int]]: | |
""" | |
Preprocess image using YOLO's letterboxing method | |
Returns: | |
- Processed image tensor | |
- Scale ratio (original to processed) | |
- Padding dimensions (width, height) | |
""" | |
# Get original dimensions | |
h, w = image.shape[:2] | |
# Calculate scale and new dimensions | |
scale = min(INPUT_SIZE / h, INPUT_SIZE / w) | |
new_h, new_w = int(h * scale), int(w * scale) | |
# Resize with antialiasing | |
resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA) | |
# Create canvas with 114-gray background | |
canvas = np.full((INPUT_SIZE, INPUT_SIZE, 3), 114, dtype=np.uint8) | |
# Calculate padding offsets | |
pad_w = (INPUT_SIZE - new_w) // 2 | |
pad_h = (INPUT_SIZE - new_h) // 2 | |
# Paste resized image onto canvas | |
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized | |
# Convert to float32 and normalize | |
processed = canvas.astype(np.float32) / 255.0 | |
# Transpose to CHW format and add batch dimension | |
processed = processed.transpose(2, 0, 1)[None, ...] | |
return processed, scale, (pad_w, pad_h) | |
def process_detections( | |
outputs: np.ndarray, | |
scale: float, | |
padding: Tuple[int, int], | |
orig_shape: Tuple[int, int] | |
) -> Tuple[List[List[int]], List[float], List[int]]: | |
""" | |
Process raw model outputs into usable detections | |
Returns: | |
- List of bounding boxes [x1, y1, x2, y2] | |
- List of confidence scores | |
- List of class IDs | |
""" | |
# Transpose and squeeze outputs | |
predictions = np.squeeze(outputs[0]).T | |
# Filter by confidence threshold | |
scores = np.max(predictions[:, 4:], axis=1) | |
valid = scores > CONF_THRESHOLD | |
predictions = predictions[valid] | |
scores = scores[valid] | |
if predictions.shape[0] == 0: | |
return [], [], [] | |
# Extract boxes and classes | |
boxes = predictions[:, :4] | |
class_ids = np.argmax(predictions[:, 4:], axis=1) | |
# Convert from center to corner coordinates | |
boxes[:, [0, 1]] = boxes[:, [0, 1]] - boxes[:, [2, 3]] / 2 # xy top-left | |
boxes[:, [2, 3]] = boxes[:, [0, 1]] + boxes[:, [2, 3]] # xy bottom-right | |
# Adjust for letterbox padding and scale | |
pad_w, pad_h = padding | |
boxes[:, [0, 2]] = (boxes[:, [0, 2]] - pad_w) / scale | |
boxes[:, [1, 3]] = (boxes[:, [1, 3]] - pad_h) / scale | |
# Clip coordinates to image dimensions | |
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, orig_shape[1]) | |
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, orig_shape[0]) | |
# Convert to integer coordinates | |
boxes = boxes.round().astype(int) | |
# Apply NMS | |
indices = cv2.dnn.NMSBoxes( | |
boxes.tolist(), | |
scores.tolist(), | |
CONF_THRESHOLD, | |
IOU_THRESHOLD | |
) | |
if len(indices) == 0: | |
return [], [], [] | |
# Return filtered results | |
return boxes[indices], scores[indices], class_ids[indices] | |
def draw_detections( | |
image: np.ndarray, | |
boxes: List[List[int]], | |
scores: List[float], | |
class_ids: List[int] | |
) -> np.ndarray: | |
"""Draw bounding boxes and labels on image""" | |
output = image.copy() | |
for box, score, class_id in zip(boxes, scores, class_ids): | |
x1, y1, x2, y2 = box | |
# Draw bounding box | |
color = (0, 255, 0) # Green | |
cv2.rectangle(output, (x1, y1), (x2, y2), color, 2) | |
# Create label | |
label = f"{CLASS_NAMES[class_id]}: {score:.2f}" | |
# Get text size | |
(tw, th), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
# Draw text background | |
cv2.rectangle( | |
output, | |
(x1, y1 - th - 4), | |
(x1 + tw, y1), | |
color, | |
-1 | |
) | |
# Draw text | |
cv2.putText( | |
output, | |
label, | |
(x1, y1 - 4), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.5, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA | |
) | |
return output | |
def inference_frame(frame: np.ndarray) -> np.ndarray: | |
"""Full processing pipeline for single frame""" | |
# Preprocess | |
input_tensor, scale, padding = letterbox_image(frame) | |
# Inference | |
outputs = ort_session.run( | |
None, | |
{ort_session.get_inputs()[0].name: input_tensor} | |
) | |
# Post-process | |
boxes, scores, class_ids = process_detections( | |
outputs, | |
scale, | |
padding, | |
frame.shape[:2] | |
) | |
# Draw results | |
if len(boxes) > 0: | |
frame = draw_detections(frame, boxes, scores, class_ids) | |
return frame | |
# Gradio interface setup | |
with gr.Blocks() as app: | |
gr.Markdown("# Real-Time YOLOv8 Object Detection") | |
with gr.Row(): | |
webcam = gr.Image( | |
sources=["webcam"], | |
streaming=True, | |
label="Webcam Input" | |
) | |
output = gr.Image( | |
label="Detections", | |
interactive=False | |
) | |
webcam.stream( | |
fn=inference_frame, | |
inputs=webcam, | |
outputs=output, | |
show_progress="hidden" | |
) | |
if __name__ == "__main__": | |
app.launch(show_error=True) | |
# https://discuss.huggingface.co/t/failed-to-create-cudaexecutionprovider/26501 | |
# https://stackoverflow.com/questions/75267445/why-does-onnxruntime-fail-to-create-cudaexecutionprovider-in-linuxubuntu-20 | |
# https://github.com/microsoft/onnxruntime/issues/4292 | |
# https://github.com/ultralytics/ultralytics/issues/664 |