Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- app.py +13 -13
- modutils.py +540 -156
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -163,7 +163,6 @@ def process_string(input_string):
|
|
| 163 |
## BEGIN MOD
|
| 164 |
from modutils import (
|
| 165 |
download_private_repo,
|
| 166 |
-
get_private_lora_model_lists,
|
| 167 |
get_local_model_list,
|
| 168 |
get_model_id_list,
|
| 169 |
escape_lora_basename,
|
|
@@ -172,6 +171,7 @@ from modutils import (
|
|
| 172 |
get_tupled_embed_list,
|
| 173 |
update_lora_dict,
|
| 174 |
get_lora_model_list,
|
|
|
|
| 175 |
)
|
| 176 |
from env import (
|
| 177 |
hf_token,
|
|
@@ -253,18 +253,19 @@ def get_my_lora(link_url):
|
|
| 253 |
path.resolve().rename(new_path.resolve())
|
| 254 |
update_lora_dict(str(new_path))
|
| 255 |
new_lora_model_list = get_lora_model_list()
|
|
|
|
| 256 |
|
| 257 |
return gr.update(
|
| 258 |
-
choices=
|
| 259 |
), gr.update(
|
| 260 |
-
choices=
|
| 261 |
), gr.update(
|
| 262 |
-
choices=
|
| 263 |
), gr.update(
|
| 264 |
-
choices=
|
| 265 |
), gr.update(
|
| 266 |
-
choices=
|
| 267 |
-
)
|
| 268 |
## END MOD
|
| 269 |
|
| 270 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
|
@@ -384,7 +385,6 @@ from modutils import (
|
|
| 384 |
move_file_lora,
|
| 385 |
set_lora_trigger,
|
| 386 |
set_lora_prompt,
|
| 387 |
-
get_lora_tupled_list,
|
| 388 |
apply_lora_prompt,
|
| 389 |
search_civitai_lora,
|
| 390 |
select_civitai_lora,
|
|
@@ -1032,35 +1032,35 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", elem_id="main", css=CSS) as app:
|
|
| 1032 |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
|
| 1033 |
|
| 1034 |
with gr.Accordion("LoRA", open=False, visible=True) as menu_lora:
|
| 1035 |
-
lora1_gui = gr.Dropdown(label="Lora1", choices=
|
| 1036 |
lora_scale_1_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 1")
|
| 1037 |
with gr.Row():
|
| 1038 |
with gr.Group():
|
| 1039 |
lora1_trigger_gui = gr.Textbox(label="Lora1 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1040 |
lora1_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1041 |
lora1_desc_gui = gr.Markdown(value="", visible=False)
|
| 1042 |
-
lora2_gui = gr.Dropdown(label="Lora2", choices=
|
| 1043 |
lora_scale_2_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 2")
|
| 1044 |
with gr.Row():
|
| 1045 |
with gr.Group():
|
| 1046 |
lora2_trigger_gui = gr.Textbox(label="Lora2 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1047 |
lora2_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1048 |
lora2_desc_gui = gr.Markdown(value="", visible=False)
|
| 1049 |
-
lora3_gui = gr.Dropdown(label="Lora3", choices=
|
| 1050 |
lora_scale_3_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 3")
|
| 1051 |
with gr.Row():
|
| 1052 |
with gr.Group():
|
| 1053 |
lora3_trigger_gui = gr.Textbox(label="Lora3 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1054 |
lora3_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1055 |
lora3_desc_gui = gr.Markdown(value="", visible=False)
|
| 1056 |
-
lora4_gui = gr.Dropdown(label="Lora4", choices=
|
| 1057 |
lora_scale_4_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 4")
|
| 1058 |
with gr.Row():
|
| 1059 |
with gr.Group():
|
| 1060 |
lora4_trigger_gui = gr.Textbox(label="Lora4 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1061 |
lora4_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1062 |
lora4_desc_gui = gr.Markdown(value="", visible=False)
|
| 1063 |
-
lora5_gui = gr.Dropdown(label="Lora5", choices=
|
| 1064 |
lora_scale_5_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 5")
|
| 1065 |
with gr.Row():
|
| 1066 |
with gr.Group():
|
|
|
|
| 163 |
## BEGIN MOD
|
| 164 |
from modutils import (
|
| 165 |
download_private_repo,
|
|
|
|
| 166 |
get_local_model_list,
|
| 167 |
get_model_id_list,
|
| 168 |
escape_lora_basename,
|
|
|
|
| 171 |
get_tupled_embed_list,
|
| 172 |
update_lora_dict,
|
| 173 |
get_lora_model_list,
|
| 174 |
+
get_all_lora_tupled_list,
|
| 175 |
)
|
| 176 |
from env import (
|
| 177 |
hf_token,
|
|
|
|
| 253 |
path.resolve().rename(new_path.resolve())
|
| 254 |
update_lora_dict(str(new_path))
|
| 255 |
new_lora_model_list = get_lora_model_list()
|
| 256 |
+
new_lora_tupled_list = get_all_lora_tupled_list()
|
| 257 |
|
| 258 |
return gr.update(
|
| 259 |
+
choices=new_lora_tupled_list, value=new_lora_model_list[-1]
|
| 260 |
), gr.update(
|
| 261 |
+
choices=new_lora_tupled_list
|
| 262 |
), gr.update(
|
| 263 |
+
choices=new_lora_tupled_list
|
| 264 |
), gr.update(
|
| 265 |
+
choices=new_lora_tupled_list
|
| 266 |
), gr.update(
|
| 267 |
+
choices=new_lora_tupled_list
|
| 268 |
+
)
|
| 269 |
## END MOD
|
| 270 |
|
| 271 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
|
|
|
| 385 |
move_file_lora,
|
| 386 |
set_lora_trigger,
|
| 387 |
set_lora_prompt,
|
|
|
|
| 388 |
apply_lora_prompt,
|
| 389 |
search_civitai_lora,
|
| 390 |
select_civitai_lora,
|
|
|
|
| 1032 |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
|
| 1033 |
|
| 1034 |
with gr.Accordion("LoRA", open=False, visible=True) as menu_lora:
|
| 1035 |
+
lora1_gui = gr.Dropdown(label="Lora1", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True)
|
| 1036 |
lora_scale_1_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 1")
|
| 1037 |
with gr.Row():
|
| 1038 |
with gr.Group():
|
| 1039 |
lora1_trigger_gui = gr.Textbox(label="Lora1 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1040 |
lora1_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1041 |
lora1_desc_gui = gr.Markdown(value="", visible=False)
|
| 1042 |
+
lora2_gui = gr.Dropdown(label="Lora2", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True)
|
| 1043 |
lora_scale_2_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 2")
|
| 1044 |
with gr.Row():
|
| 1045 |
with gr.Group():
|
| 1046 |
lora2_trigger_gui = gr.Textbox(label="Lora2 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1047 |
lora2_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1048 |
lora2_desc_gui = gr.Markdown(value="", visible=False)
|
| 1049 |
+
lora3_gui = gr.Dropdown(label="Lora3", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True)
|
| 1050 |
lora_scale_3_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 3")
|
| 1051 |
with gr.Row():
|
| 1052 |
with gr.Group():
|
| 1053 |
lora3_trigger_gui = gr.Textbox(label="Lora3 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1054 |
lora3_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1055 |
lora3_desc_gui = gr.Markdown(value="", visible=False)
|
| 1056 |
+
lora4_gui = gr.Dropdown(label="Lora4", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True)
|
| 1057 |
lora_scale_4_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 4")
|
| 1058 |
with gr.Row():
|
| 1059 |
with gr.Group():
|
| 1060 |
lora4_trigger_gui = gr.Textbox(label="Lora4 prompts", info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
| 1061 |
lora4_copy_button = gr.Button(value="Copy example to prompt", visible=False)
|
| 1062 |
lora4_desc_gui = gr.Markdown(value="", visible=False)
|
| 1063 |
+
lora5_gui = gr.Dropdown(label="Lora5", choices=get_all_lora_tupled_list(), value="", allow_custom_value=True)
|
| 1064 |
lora_scale_5_gui = gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label="Lora Scale 5")
|
| 1065 |
with gr.Row():
|
| 1066 |
with gr.Group():
|
modutils.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import json
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import HfApi
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
|
| 6 |
from env import (
|
|
@@ -10,29 +11,21 @@ from env import (
|
|
| 10 |
HF_MODEL_USER_LIKES,
|
| 11 |
directory_loras,
|
| 12 |
hf_read_token,
|
|
|
|
|
|
|
| 13 |
)
|
| 14 |
|
|
|
|
| 15 |
def get_user_agent():
|
| 16 |
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
| 17 |
|
| 18 |
|
| 19 |
-
def
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
| 26 |
-
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\
|
| 27 |
-
gr.update(visible=False), gr.update(value="Standard")
|
| 28 |
-
elif mode == "LoRA": # t2i LoRA mode
|
| 29 |
-
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\
|
| 30 |
-
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\
|
| 31 |
-
gr.update(visible=False), gr.update(value="Standard")
|
| 32 |
-
else: # Standard
|
| 33 |
-
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
| 34 |
-
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
|
| 35 |
-
gr.update(visible=True), gr.update(value="Standard")
|
| 36 |
|
| 37 |
|
| 38 |
def get_local_model_list(dir_path):
|
|
@@ -45,25 +38,83 @@ def get_local_model_list(dir_path):
|
|
| 45 |
return model_list
|
| 46 |
|
| 47 |
|
| 48 |
-
def
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
-
def
|
| 53 |
-
return
|
| 54 |
|
| 55 |
|
| 56 |
-
def
|
| 57 |
-
|
| 58 |
-
for tag in tags:
|
| 59 |
-
tag = str(tag).strip()
|
| 60 |
-
if tag:
|
| 61 |
-
prompts.append(tag)
|
| 62 |
-
return prompts
|
| 63 |
|
| 64 |
|
| 65 |
-
def
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
def download_private_repo(repo_id, dir_path, is_replace):
|
|
@@ -72,6 +123,7 @@ def download_private_repo(repo_id, dir_path, is_replace):
|
|
| 72 |
try:
|
| 73 |
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
|
| 74 |
except Exception as e:
|
|
|
|
| 75 |
return
|
| 76 |
if is_replace:
|
| 77 |
for file in Path(dir_path).glob("*"):
|
|
@@ -102,24 +154,6 @@ def get_private_model_list(repo_id, dir_path):
|
|
| 102 |
return model_list
|
| 103 |
|
| 104 |
|
| 105 |
-
private_lora_model_list = []
|
| 106 |
-
def get_private_lora_model_lists():
|
| 107 |
-
global private_lora_model_list
|
| 108 |
-
if len(private_lora_model_list) != 0: return private_lora_model_list
|
| 109 |
-
models1 = []
|
| 110 |
-
models2 = []
|
| 111 |
-
for repo in HF_LORA_PRIVATE_REPOS1:
|
| 112 |
-
models1.extend(get_private_model_list(repo, directory_loras))
|
| 113 |
-
for repo in HF_LORA_PRIVATE_REPOS2:
|
| 114 |
-
models2.extend(get_private_model_list(repo, directory_loras))
|
| 115 |
-
models = list_uniq(models1 + sorted(models2))
|
| 116 |
-
private_lora_model_list = models
|
| 117 |
-
return models
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
private_lora_model_list = get_private_lora_model_lists()
|
| 121 |
-
|
| 122 |
-
|
| 123 |
def download_private_file(repo_id, path, is_replace):
|
| 124 |
from huggingface_hub import hf_hub_download
|
| 125 |
file = Path(path)
|
|
@@ -142,7 +176,10 @@ def download_private_file_from_somewhere(path, is_replace):
|
|
| 142 |
download_private_file(repo_id, path, is_replace)
|
| 143 |
|
| 144 |
|
|
|
|
| 145 |
def get_model_id_list():
|
|
|
|
|
|
|
| 146 |
api = HfApi()
|
| 147 |
model_ids = []
|
| 148 |
try:
|
|
@@ -153,6 +190,7 @@ def get_model_id_list():
|
|
| 153 |
for author in HF_MODEL_USER_EX:
|
| 154 |
models_ex = api.list_models(author=author, cardData=True, sort="last_modified")
|
| 155 |
except Exception as e:
|
|
|
|
| 156 |
return model_ids
|
| 157 |
for model in models_likes:
|
| 158 |
model_ids.append(model.id) if not model.private else ""
|
|
@@ -163,15 +201,20 @@ def get_model_id_list():
|
|
| 163 |
anime_models.append(model.id) if 'anime' in model.tags else real_models.append(model.id)
|
| 164 |
model_ids.extend(anime_models)
|
| 165 |
model_ids.extend(real_models)
|
|
|
|
| 166 |
return model_ids
|
| 167 |
|
| 168 |
|
|
|
|
|
|
|
|
|
|
| 169 |
def get_t2i_model_info(repo_id: str):
|
| 170 |
api = HfApi()
|
| 171 |
try:
|
| 172 |
if " " in repo_id or not api.repo_exists(repo_id): return ""
|
| 173 |
model = api.model_info(repo_id=repo_id)
|
| 174 |
except Exception as e:
|
|
|
|
| 175 |
return ""
|
| 176 |
if model.private or model.gated: return ""
|
| 177 |
tags = model.tags
|
|
@@ -220,71 +263,37 @@ def get_tupled_model_list(model_list):
|
|
| 220 |
return tupled_list
|
| 221 |
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
newpath = oldpath
|
| 237 |
-
try:
|
| 238 |
-
if oldpath.exists():
|
| 239 |
-
newpath = oldpath.resolve().rename(Path(filename).resolve())
|
| 240 |
-
except Exception:
|
| 241 |
-
pass
|
| 242 |
-
finally:
|
| 243 |
-
output_paths.append(str(newpath))
|
| 244 |
-
output_images.append((str(newpath), str(filename)))
|
| 245 |
-
progress(1, desc="Gallery updated.")
|
| 246 |
-
return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True)
|
| 247 |
-
|
| 248 |
|
| 249 |
-
optimization_list = {
|
| 250 |
-
"None": [28, 7., 'Euler a', False, 'None', 1.],
|
| 251 |
-
"Default": [28, 7., 'Euler a', False, 'None', 1.],
|
| 252 |
-
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
|
| 253 |
-
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
|
| 254 |
-
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
|
| 255 |
-
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
|
| 256 |
-
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
|
| 257 |
-
"Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.],
|
| 258 |
-
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
|
| 259 |
-
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
|
| 260 |
-
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
|
| 261 |
-
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
|
| 262 |
-
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
|
| 263 |
-
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
|
| 264 |
-
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
|
| 265 |
-
}
|
| 266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
-
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui):
|
| 269 |
-
if not opt in list(optimization_list.keys()): opt = "None"
|
| 270 |
-
def_steps_gui = 28
|
| 271 |
-
def_cfg_gui = 7.
|
| 272 |
-
steps = optimization_list.get(opt, "None")[0]
|
| 273 |
-
cfg = optimization_list.get(opt, "None")[1]
|
| 274 |
-
sampler = optimization_list.get(opt, "None")[2]
|
| 275 |
-
clip_skip = optimization_list.get(opt, "None")[3]
|
| 276 |
-
lora = optimization_list.get(opt, "None")[4]
|
| 277 |
-
lora_scale = optimization_list.get(opt, "None")[5]
|
| 278 |
-
if opt == "None":
|
| 279 |
-
steps = max(steps_gui, def_steps_gui)
|
| 280 |
-
cfg = max(cfg_gui, def_cfg_gui)
|
| 281 |
-
clip_skip = clip_skip_gui
|
| 282 |
-
elif opt == "SPO" or opt == "DPO":
|
| 283 |
-
steps = max(steps_gui, def_steps_gui)
|
| 284 |
-
cfg = max(cfg_gui, def_cfg_gui)
|
| 285 |
|
| 286 |
-
|
| 287 |
-
gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale),
|
| 288 |
|
| 289 |
|
| 290 |
def set_lora_prompt(prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui,\
|
|
@@ -318,19 +327,6 @@ def set_lora_prompt(prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui,
|
|
| 318 |
return gr.update(value=prompt)
|
| 319 |
|
| 320 |
|
| 321 |
-
lora_trigger_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]}
|
| 322 |
-
try:
|
| 323 |
-
with open('lora_dict.json', encoding='utf-8') as f:
|
| 324 |
-
temp_dict = json.load(f)
|
| 325 |
-
for k, v in temp_dict.items():
|
| 326 |
-
lora_trigger_dict[escape_lora_basename(k)] = v
|
| 327 |
-
except Exception:
|
| 328 |
-
pass
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
civitai_not_exists_list = []
|
| 332 |
-
|
| 333 |
-
|
| 334 |
def get_civitai_info(path):
|
| 335 |
global civitai_not_exists_list
|
| 336 |
import requests
|
|
@@ -368,15 +364,6 @@ def get_civitai_info(path):
|
|
| 368 |
return items
|
| 369 |
|
| 370 |
|
| 371 |
-
def update_lora_dict(path):
|
| 372 |
-
global lora_trigger_dict
|
| 373 |
-
key = escape_lora_basename(Path(path).stem)
|
| 374 |
-
if key in lora_trigger_dict.keys(): return
|
| 375 |
-
items = get_civitai_info(path)
|
| 376 |
-
if items == None: return
|
| 377 |
-
lora_trigger_dict[key] = items
|
| 378 |
-
|
| 379 |
-
|
| 380 |
def get_lora_model_list():
|
| 381 |
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras))
|
| 382 |
loras.insert(0, "None")
|
|
@@ -384,22 +371,29 @@ def get_lora_model_list():
|
|
| 384 |
return loras
|
| 385 |
|
| 386 |
|
| 387 |
-
def
|
| 388 |
-
global
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
tupled_list = []
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
key = escape_lora_basename(basename)
|
| 396 |
items = None
|
| 397 |
-
if key in
|
| 398 |
-
items =
|
| 399 |
-
|
| 400 |
items = get_civitai_info(model)
|
| 401 |
if items != None:
|
| 402 |
-
|
| 403 |
name = basename
|
| 404 |
value = model
|
| 405 |
if items and items[2] != "":
|
|
@@ -411,12 +405,312 @@ def get_lora_tupled_list(lora_model_list):
|
|
| 411 |
return tupled_list
|
| 412 |
|
| 413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
def set_lora_trigger(lora_gui: str):
|
| 415 |
if not lora_gui or lora_gui == "None": return gr.update(value="", visible=False), gr.update(visible=False),\
|
| 416 |
gr.update(value="", visible=False), gr.update(value="")
|
| 417 |
path = Path(lora_gui)
|
| 418 |
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
| 419 |
-
if not new_path.stem in
|
| 420 |
return gr.update(value="", visible=False), gr.update(visible=False),\
|
| 421 |
gr.update(value="", visible=False), gr.update(value="")
|
| 422 |
if not new_path.exists():
|
|
@@ -427,11 +721,11 @@ def set_lora_trigger(lora_gui: str):
|
|
| 427 |
value = "None"
|
| 428 |
md = "None"
|
| 429 |
flag = False
|
| 430 |
-
items =
|
| 431 |
if items == None:
|
| 432 |
items = get_civitai_info(str(new_path))
|
| 433 |
if items != None:
|
| 434 |
-
|
| 435 |
flag = True
|
| 436 |
if items and items[2] != "":
|
| 437 |
tag = items[0]
|
|
@@ -484,18 +778,19 @@ def move_file_lora(filepaths):
|
|
| 484 |
update_lora_dict(str(newpath))
|
| 485 |
|
| 486 |
new_lora_model_list = get_lora_model_list()
|
|
|
|
| 487 |
|
| 488 |
return gr.update(
|
| 489 |
-
choices=
|
| 490 |
), gr.update(
|
| 491 |
-
choices=
|
| 492 |
), gr.update(
|
| 493 |
-
choices=
|
| 494 |
), gr.update(
|
| 495 |
-
choices=
|
| 496 |
), gr.update(
|
| 497 |
-
choices=
|
| 498 |
-
)
|
| 499 |
|
| 500 |
|
| 501 |
def search_lora_on_civitai(query: str, allow_model: list[str]):
|
|
@@ -563,6 +858,58 @@ def select_civitai_lora(search_result):
|
|
| 563 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 564 |
|
| 565 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
quality_prompt_list = [
|
| 567 |
{
|
| 568 |
"name": "None",
|
|
@@ -661,6 +1008,47 @@ style_list = [
|
|
| 661 |
]
|
| 662 |
|
| 663 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 664 |
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
|
| 665 |
preset_sampler_setting = {
|
| 666 |
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"],
|
|
@@ -832,14 +1220,12 @@ def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_g
|
|
| 832 |
tag = str(tag).strip()
|
| 833 |
if tag and not tag in ti_tags:
|
| 834 |
prompts.append(tag)
|
| 835 |
-
|
| 836 |
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else []
|
| 837 |
neg_prompts = []
|
| 838 |
for tag in ntags:
|
| 839 |
tag = str(tag).strip()
|
| 840 |
if tag and not tag in ti_tags:
|
| 841 |
neg_prompts.append(tag)
|
| 842 |
-
|
| 843 |
ti_prompts = []
|
| 844 |
ti_neg_prompts = []
|
| 845 |
for ti in textual_inversion_gui:
|
|
@@ -849,11 +1235,9 @@ def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_g
|
|
| 849 |
ti_prompts.append(tokens[0])
|
| 850 |
else: # negative prompt (default)
|
| 851 |
ti_neg_prompts.append(tokens[0])
|
| 852 |
-
|
| 853 |
empty = [""]
|
| 854 |
prompt = ", ".join(prompts + ti_prompts + empty)
|
| 855 |
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty)
|
| 856 |
-
|
| 857 |
return gr.update(value=prompt), gr.update(value=neg_prompt),
|
| 858 |
|
| 859 |
|
|
|
|
| 1 |
import json
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import HfApi
|
| 4 |
+
import os
|
| 5 |
from pathlib import Path
|
| 6 |
|
| 7 |
from env import (
|
|
|
|
| 11 |
HF_MODEL_USER_LIKES,
|
| 12 |
directory_loras,
|
| 13 |
hf_read_token,
|
| 14 |
+
hf_token,
|
| 15 |
+
CIVITAI_API_KEY,
|
| 16 |
)
|
| 17 |
|
| 18 |
+
|
| 19 |
def get_user_agent():
|
| 20 |
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
| 21 |
|
| 22 |
|
| 23 |
+
def list_uniq(l):
|
| 24 |
+
return sorted(set(l), key=l.index)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def list_sub(a, b):
|
| 28 |
+
return [e for e in a if e not in b]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def get_local_model_list(dir_path):
|
|
|
|
| 38 |
return model_list
|
| 39 |
|
| 40 |
|
| 41 |
+
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
| 42 |
+
url = url.strip()
|
| 43 |
+
|
| 44 |
+
if "drive.google.com" in url:
|
| 45 |
+
original_dir = os.getcwd()
|
| 46 |
+
os.chdir(directory)
|
| 47 |
+
os.system(f"gdown --fuzzy {url}")
|
| 48 |
+
os.chdir(original_dir)
|
| 49 |
+
elif "huggingface.co" in url:
|
| 50 |
+
url = url.replace("?download=true", "")
|
| 51 |
+
# url = urllib.parse.quote(url, safe=':/') # fix encoding
|
| 52 |
+
if "/blob/" in url:
|
| 53 |
+
url = url.replace("/blob/", "/resolve/")
|
| 54 |
+
user_header = f'"Authorization: Bearer {hf_token}"'
|
| 55 |
+
if hf_token:
|
| 56 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
| 57 |
+
else:
|
| 58 |
+
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
| 59 |
+
elif "civitai.com" in url:
|
| 60 |
+
if "?" in url:
|
| 61 |
+
url = url.split("?")[0]
|
| 62 |
+
if civitai_api_key:
|
| 63 |
+
url = url + f"?token={civitai_api_key}"
|
| 64 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 65 |
+
else:
|
| 66 |
+
print("\033[91mYou need an API key to download Civitai models.\033[0m")
|
| 67 |
+
else:
|
| 68 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
| 69 |
|
| 70 |
|
| 71 |
+
def escape_lora_basename(basename: str):
|
| 72 |
+
return basename.replace(".", "_").replace(" ", "_").replace(",", "")
|
| 73 |
|
| 74 |
|
| 75 |
+
def to_lora_key(path: str):
|
| 76 |
+
return escape_lora_basename(Path(path).stem)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
+
def to_lora_path(key: str):
|
| 80 |
+
if Path(key).is_file(): return key
|
| 81 |
+
path = Path(f"{directory_loras}/{escape_lora_basename(key)}.safetensors")
|
| 82 |
+
return str(path)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def safe_float(input):
|
| 86 |
+
output = 1.0
|
| 87 |
+
try:
|
| 88 |
+
output = float(input)
|
| 89 |
+
except Exception:
|
| 90 |
+
output = 1.0
|
| 91 |
+
return output
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
| 95 |
+
from datetime import datetime, timezone, timedelta
|
| 96 |
+
progress(0, desc="Updating gallery...")
|
| 97 |
+
dt_now = datetime.now(timezone(timedelta(hours=9)))
|
| 98 |
+
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
|
| 99 |
+
i = 1
|
| 100 |
+
if not images: return images
|
| 101 |
+
output_images = []
|
| 102 |
+
output_paths = []
|
| 103 |
+
for image in images:
|
| 104 |
+
filename = basename + str(i) + ".png"
|
| 105 |
+
i += 1
|
| 106 |
+
oldpath = Path(image[0])
|
| 107 |
+
newpath = oldpath
|
| 108 |
+
try:
|
| 109 |
+
if oldpath.exists():
|
| 110 |
+
newpath = oldpath.resolve().rename(Path(filename).resolve())
|
| 111 |
+
except Exception:
|
| 112 |
+
pass
|
| 113 |
+
finally:
|
| 114 |
+
output_paths.append(str(newpath))
|
| 115 |
+
output_images.append((str(newpath), str(filename)))
|
| 116 |
+
progress(1, desc="Gallery updated.")
|
| 117 |
+
return gr.update(value=output_images), gr.update(value=output_paths), gr.update(visible=True)
|
| 118 |
|
| 119 |
|
| 120 |
def download_private_repo(repo_id, dir_path, is_replace):
|
|
|
|
| 123 |
try:
|
| 124 |
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
|
| 125 |
except Exception as e:
|
| 126 |
+
print(f"Error: Failed to download {repo_id}. ")
|
| 127 |
return
|
| 128 |
if is_replace:
|
| 129 |
for file in Path(dir_path).glob("*"):
|
|
|
|
| 154 |
return model_list
|
| 155 |
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
def download_private_file(repo_id, path, is_replace):
|
| 158 |
from huggingface_hub import hf_hub_download
|
| 159 |
file = Path(path)
|
|
|
|
| 176 |
download_private_file(repo_id, path, is_replace)
|
| 177 |
|
| 178 |
|
| 179 |
+
model_id_list = []
|
| 180 |
def get_model_id_list():
|
| 181 |
+
global model_id_list
|
| 182 |
+
if len(model_id_list) != 0: return model_id_list
|
| 183 |
api = HfApi()
|
| 184 |
model_ids = []
|
| 185 |
try:
|
|
|
|
| 190 |
for author in HF_MODEL_USER_EX:
|
| 191 |
models_ex = api.list_models(author=author, cardData=True, sort="last_modified")
|
| 192 |
except Exception as e:
|
| 193 |
+
print(f"Error: Failed to list {author}'s models. ")
|
| 194 |
return model_ids
|
| 195 |
for model in models_likes:
|
| 196 |
model_ids.append(model.id) if not model.private else ""
|
|
|
|
| 201 |
anime_models.append(model.id) if 'anime' in model.tags else real_models.append(model.id)
|
| 202 |
model_ids.extend(anime_models)
|
| 203 |
model_ids.extend(real_models)
|
| 204 |
+
model_id_list = model_ids.copy()
|
| 205 |
return model_ids
|
| 206 |
|
| 207 |
|
| 208 |
+
model_id_list = get_model_id_list()
|
| 209 |
+
|
| 210 |
+
|
| 211 |
def get_t2i_model_info(repo_id: str):
|
| 212 |
api = HfApi()
|
| 213 |
try:
|
| 214 |
if " " in repo_id or not api.repo_exists(repo_id): return ""
|
| 215 |
model = api.model_info(repo_id=repo_id)
|
| 216 |
except Exception as e:
|
| 217 |
+
print(f"Error: Failed to get {repo_id}'s info. ")
|
| 218 |
return ""
|
| 219 |
if model.private or model.gated: return ""
|
| 220 |
tags = model.tags
|
|
|
|
| 263 |
return tupled_list
|
| 264 |
|
| 265 |
|
| 266 |
+
private_lora_dict = {}
|
| 267 |
+
try:
|
| 268 |
+
with open('lora_dict.json', encoding='utf-8') as f:
|
| 269 |
+
d = json.load(f)
|
| 270 |
+
for k, v in d.items():
|
| 271 |
+
private_lora_dict[escape_lora_basename(k)] = v
|
| 272 |
+
except Exception:
|
| 273 |
+
pass
|
| 274 |
+
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
|
| 275 |
+
civitai_not_exists_list = []
|
| 276 |
+
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
|
| 277 |
+
civitai_lora_last_results = {} # {"URL to download": {search results}, ...}
|
| 278 |
+
all_lora_list = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
private_lora_model_list = []
|
| 282 |
+
def get_private_lora_model_lists():
|
| 283 |
+
global private_lora_model_list
|
| 284 |
+
if len(private_lora_model_list) != 0: return private_lora_model_list
|
| 285 |
+
models1 = []
|
| 286 |
+
models2 = []
|
| 287 |
+
for repo in HF_LORA_PRIVATE_REPOS1:
|
| 288 |
+
models1.extend(get_private_model_list(repo, directory_loras))
|
| 289 |
+
for repo in HF_LORA_PRIVATE_REPOS2:
|
| 290 |
+
models2.extend(get_private_model_list(repo, directory_loras))
|
| 291 |
+
models = list_uniq(models1 + sorted(models2))
|
| 292 |
+
private_lora_model_list = models.copy()
|
| 293 |
+
return models
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
+
private_lora_model_list = get_private_lora_model_lists()
|
|
|
|
| 297 |
|
| 298 |
|
| 299 |
def set_lora_prompt(prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui,\
|
|
|
|
| 327 |
return gr.update(value=prompt)
|
| 328 |
|
| 329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
def get_civitai_info(path):
|
| 331 |
global civitai_not_exists_list
|
| 332 |
import requests
|
|
|
|
| 364 |
return items
|
| 365 |
|
| 366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
def get_lora_model_list():
|
| 368 |
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras))
|
| 369 |
loras.insert(0, "None")
|
|
|
|
| 371 |
return loras
|
| 372 |
|
| 373 |
|
| 374 |
+
def get_all_lora_list():
|
| 375 |
+
global all_lora_list
|
| 376 |
+
loras = get_lora_model_list()
|
| 377 |
+
all_lora_list = loras.copy()
|
| 378 |
+
return loras
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def get_all_lora_tupled_list():
|
| 382 |
+
global loras_dict
|
| 383 |
+
models = get_all_lora_list()
|
| 384 |
+
if not models: return []
|
| 385 |
tupled_list = []
|
| 386 |
+
for model in models:
|
| 387 |
+
#if not model: continue # to avoid GUI-related bug
|
| 388 |
+
basename = Path(model).stem
|
| 389 |
+
key = to_lora_key(model)
|
|
|
|
| 390 |
items = None
|
| 391 |
+
if key in loras_dict.keys():
|
| 392 |
+
items = loras_dict.get(key, None)
|
| 393 |
+
else:
|
| 394 |
items = get_civitai_info(model)
|
| 395 |
if items != None:
|
| 396 |
+
loras_dict[key] = items
|
| 397 |
name = basename
|
| 398 |
value = model
|
| 399 |
if items and items[2] != "":
|
|
|
|
| 405 |
return tupled_list
|
| 406 |
|
| 407 |
|
| 408 |
+
def update_lora_dict(path):
|
| 409 |
+
global loras_dict
|
| 410 |
+
key = escape_lora_basename(Path(path).stem)
|
| 411 |
+
if key in loras_dict.keys(): return
|
| 412 |
+
items = get_civitai_info(path)
|
| 413 |
+
if items == None: return
|
| 414 |
+
loras_dict[key] = items
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def download_lora(dl_urls: str):
|
| 418 |
+
global loras_url_to_path_dict
|
| 419 |
+
dl_path = ""
|
| 420 |
+
before = get_local_model_list(directory_loras)
|
| 421 |
+
urls = []
|
| 422 |
+
for url in [url.strip() for url in dl_urls.split(',')]:
|
| 423 |
+
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
| 424 |
+
if not Path(local_path).exists():
|
| 425 |
+
download_things(directory_loras, url, hf_token, CIVITAI_API_KEY)
|
| 426 |
+
urls.append(url)
|
| 427 |
+
after = get_local_model_list(directory_loras)
|
| 428 |
+
new_files = list_sub(after, before)
|
| 429 |
+
i = 0
|
| 430 |
+
for file in new_files:
|
| 431 |
+
path = Path(file)
|
| 432 |
+
if path.exists():
|
| 433 |
+
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
| 434 |
+
path.resolve().rename(new_path.resolve())
|
| 435 |
+
loras_url_to_path_dict[urls[i]] = str(new_path)
|
| 436 |
+
update_lora_dict(str(new_path))
|
| 437 |
+
dl_path = str(new_path)
|
| 438 |
+
i += 1
|
| 439 |
+
return dl_path
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def copy_lora(path: str, new_path: str):
|
| 443 |
+
import shutil
|
| 444 |
+
if path == new_path: return new_path
|
| 445 |
+
cpath = Path(path)
|
| 446 |
+
npath = Path(new_path)
|
| 447 |
+
if cpath.exists():
|
| 448 |
+
try:
|
| 449 |
+
shutil.copy(str(cpath.resolve()), str(npath.resolve()))
|
| 450 |
+
except Exception:
|
| 451 |
+
return None
|
| 452 |
+
update_lora_dict(str(npath))
|
| 453 |
+
return new_path
|
| 454 |
+
else:
|
| 455 |
+
return None
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
|
| 459 |
+
path = download_lora(dl_urls)
|
| 460 |
+
if path:
|
| 461 |
+
if not lora1 or lora1 == "None":
|
| 462 |
+
lora1 = path
|
| 463 |
+
elif not lora2 or lora2 == "None":
|
| 464 |
+
lora2 = path
|
| 465 |
+
elif not lora3 or lora3 == "None":
|
| 466 |
+
lora3 = path
|
| 467 |
+
elif not lora4 or lora4 == "None":
|
| 468 |
+
lora4 = path
|
| 469 |
+
elif not lora5 or lora5 == "None":
|
| 470 |
+
lora5 = path
|
| 471 |
+
choices = get_all_lora_tupled_list()
|
| 472 |
+
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
|
| 473 |
+
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_valid_lora_name(query: str):
|
| 477 |
+
path = "None"
|
| 478 |
+
if not query or query == "None": return "None"
|
| 479 |
+
if to_lora_key(query) in loras_dict.keys(): return query
|
| 480 |
+
if query in loras_url_to_path_dict.keys():
|
| 481 |
+
path = loras_url_to_path_dict[query]
|
| 482 |
+
else:
|
| 483 |
+
path = to_lora_path(query.strip().split('/')[-1])
|
| 484 |
+
if Path(path).exists():
|
| 485 |
+
return path
|
| 486 |
+
elif "http" in query:
|
| 487 |
+
dl_file = download_lora(query)
|
| 488 |
+
if dl_file and Path(dl_file).exists(): return dl_file
|
| 489 |
+
else:
|
| 490 |
+
dl_file = find_similar_lora(query)
|
| 491 |
+
if dl_file and Path(dl_file).exists(): return dl_file
|
| 492 |
+
return "None"
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def get_valid_lora_path(query: str):
|
| 496 |
+
path = None
|
| 497 |
+
if not query or query == "None": return None
|
| 498 |
+
if to_lora_key(query) in loras_dict.keys(): return query
|
| 499 |
+
if Path(path).exists():
|
| 500 |
+
return path
|
| 501 |
+
else:
|
| 502 |
+
return None
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
| 506 |
+
import re
|
| 507 |
+
wt = lora_wt
|
| 508 |
+
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
|
| 509 |
+
if not result: return wt
|
| 510 |
+
wt = safe_float(result[0][0])
|
| 511 |
+
return wt
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def set_prompt_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 515 |
+
import re
|
| 516 |
+
lora1 = get_valid_lora_name(lora1)
|
| 517 |
+
lora2 = get_valid_lora_name(lora2)
|
| 518 |
+
lora3 = get_valid_lora_name(lora3)
|
| 519 |
+
lora4 = get_valid_lora_name(lora4)
|
| 520 |
+
lora5 = get_valid_lora_name(lora5)
|
| 521 |
+
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 522 |
+
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
|
| 523 |
+
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
|
| 524 |
+
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
|
| 525 |
+
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
|
| 526 |
+
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
|
| 527 |
+
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 528 |
+
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 529 |
+
on3, label3, tag3, md3 = get_lora_info(lora3)
|
| 530 |
+
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 531 |
+
on5, label5, tag5, md5 = get_lora_info(lora5)
|
| 532 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 533 |
+
|
| 534 |
+
prompts = prompt.split(",") if prompt else []
|
| 535 |
+
for p in prompts:
|
| 536 |
+
p = str(p).strip()
|
| 537 |
+
if "<lora" in p:
|
| 538 |
+
result = re.findall(r'<lora:(.+?):(.+?)>', p)
|
| 539 |
+
if not result: continue
|
| 540 |
+
key = result[0][0]
|
| 541 |
+
wt = result[0][1]
|
| 542 |
+
path = to_lora_path(key)
|
| 543 |
+
if not key in loras_dict.keys() or not path:
|
| 544 |
+
path = get_valid_lora_name(path)
|
| 545 |
+
if not path or path == "None": continue
|
| 546 |
+
if path in lora_paths:
|
| 547 |
+
continue
|
| 548 |
+
elif not on1:
|
| 549 |
+
lora1 = path
|
| 550 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 551 |
+
lora1_wt = safe_float(wt)
|
| 552 |
+
on1 = True
|
| 553 |
+
elif not on2:
|
| 554 |
+
lora2 = path
|
| 555 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 556 |
+
lora2_wt = safe_float(wt)
|
| 557 |
+
on2 = True
|
| 558 |
+
elif not on3:
|
| 559 |
+
lora3 = path
|
| 560 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 561 |
+
lora3_wt = safe_float(wt)
|
| 562 |
+
on3 = True
|
| 563 |
+
elif not on4:
|
| 564 |
+
lora4 = path
|
| 565 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 566 |
+
lora4_wt = safe_float(wt)
|
| 567 |
+
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 568 |
+
elif not on5:
|
| 569 |
+
lora5 = path
|
| 570 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 571 |
+
lora5_wt = safe_float(wt)
|
| 572 |
+
on5 = True
|
| 573 |
+
|
| 574 |
+
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
def get_lora_info(lora_path: str):
|
| 578 |
+
is_valid = False
|
| 579 |
+
tag = ""
|
| 580 |
+
label = ""
|
| 581 |
+
md = "None"
|
| 582 |
+
if not lora_path or lora_path == "None": return is_valid, label, tag, md
|
| 583 |
+
path = Path(lora_path)
|
| 584 |
+
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
| 585 |
+
if not to_lora_key(str(new_path)) in loras_dict.keys() and not str(path) in set(all_lora_list):
|
| 586 |
+
return tag, label, md
|
| 587 |
+
if not new_path.exists():
|
| 588 |
+
download_private_file_from_somewhere(str(path), True)
|
| 589 |
+
basename = new_path.stem
|
| 590 |
+
label = f'Name: {basename}'
|
| 591 |
+
items = loras_dict.get(basename, None)
|
| 592 |
+
if items == None:
|
| 593 |
+
items = get_civitai_info(str(new_path))
|
| 594 |
+
if items != None:
|
| 595 |
+
loras_dict[basename] = items
|
| 596 |
+
if items and items[2] != "":
|
| 597 |
+
tag = items[0]
|
| 598 |
+
label = f'Name: {basename}'
|
| 599 |
+
if items[1] == "Pony":
|
| 600 |
+
label = f'Name: {basename} (for Pony🐴)'
|
| 601 |
+
if items[4]:
|
| 602 |
+
md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})'
|
| 603 |
+
elif items[3]:
|
| 604 |
+
md = f'[LoRA Model URL]({items[3]})'
|
| 605 |
+
is_valid = True
|
| 606 |
+
return is_valid, label, tag, md
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
def normalize_prompt_list(tags: list[str]):
|
| 610 |
+
prompts = []
|
| 611 |
+
for tag in tags:
|
| 612 |
+
tag = str(tag).strip()
|
| 613 |
+
if tag:
|
| 614 |
+
prompts.append(tag)
|
| 615 |
+
return prompts
|
| 616 |
+
|
| 617 |
+
'''
|
| 618 |
+
def apply_lora_prompt(prompt: str, lora_info: str):
|
| 619 |
+
if lora_info == "None": return gr.update(value=prompt)
|
| 620 |
+
tags = prompt.split(",") if prompt else []
|
| 621 |
+
prompts = normalize_prompt_list(tags)
|
| 622 |
+
|
| 623 |
+
lora_tag = lora_info.replace("/",",")
|
| 624 |
+
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
|
| 625 |
+
lora_prompts = normalize_prompt_list(lora_tags)
|
| 626 |
+
|
| 627 |
+
empty = [""]
|
| 628 |
+
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
|
| 629 |
+
return gr.update(value=prompt)
|
| 630 |
+
'''
|
| 631 |
+
|
| 632 |
+
def update_loras(prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 633 |
+
import re
|
| 634 |
+
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 635 |
+
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 636 |
+
on3, label3, tag3, md3 = get_lora_info(lora3)
|
| 637 |
+
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 638 |
+
on5, label5, tag5, md5 = get_lora_info(lora5)
|
| 639 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 640 |
+
|
| 641 |
+
prompts = prompt.split(",") if prompt else []
|
| 642 |
+
output_prompts = []
|
| 643 |
+
for p in prompts:
|
| 644 |
+
p = str(p).strip()
|
| 645 |
+
if "<lora" in p:
|
| 646 |
+
result = re.findall(r'<lora:(.+?):(.+?)>', p)
|
| 647 |
+
if not result: continue
|
| 648 |
+
key = result[0][0]
|
| 649 |
+
wt = result[0][1]
|
| 650 |
+
path = to_lora_path(key)
|
| 651 |
+
if not key in loras_dict.keys() or not path: continue
|
| 652 |
+
if path in lora_paths:
|
| 653 |
+
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>")
|
| 654 |
+
elif not on1:
|
| 655 |
+
lora1 = path
|
| 656 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 657 |
+
lora1_wt = safe_float(wt)
|
| 658 |
+
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 659 |
+
output_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
|
| 660 |
+
elif not on2:
|
| 661 |
+
lora2 = path
|
| 662 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 663 |
+
lora2_wt = safe_float(wt)
|
| 664 |
+
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 665 |
+
output_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
|
| 666 |
+
elif not on3:
|
| 667 |
+
lora3 = path
|
| 668 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 669 |
+
lora3_wt = safe_float(wt)
|
| 670 |
+
on3, label3, tag3, md3 = get_lora_info(lora3)
|
| 671 |
+
output_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
|
| 672 |
+
elif not on4:
|
| 673 |
+
lora4 = path
|
| 674 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 675 |
+
lora4_wt = safe_float(wt)
|
| 676 |
+
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 677 |
+
output_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
|
| 678 |
+
elif not on5:
|
| 679 |
+
lora5 = path
|
| 680 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 681 |
+
lora5_wt = safe_float(wt)
|
| 682 |
+
on5, label5, tag5, md5 = get_lora_info(lora5)
|
| 683 |
+
output_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
|
| 684 |
+
elif p:
|
| 685 |
+
output_prompts.append(p)
|
| 686 |
+
lora_prompts = []
|
| 687 |
+
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
|
| 688 |
+
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
|
| 689 |
+
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
|
| 690 |
+
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
|
| 691 |
+
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
|
| 692 |
+
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
|
| 693 |
+
|
| 694 |
+
choices = get_all_lora_tupled_list()
|
| 695 |
+
|
| 696 |
+
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\
|
| 697 |
+
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\
|
| 698 |
+
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\
|
| 699 |
+
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\
|
| 700 |
+
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\
|
| 701 |
+
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\
|
| 702 |
+
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
|
| 703 |
+
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
|
| 704 |
+
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
|
| 705 |
+
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
|
| 706 |
+
|
| 707 |
+
|
| 708 |
def set_lora_trigger(lora_gui: str):
|
| 709 |
if not lora_gui or lora_gui == "None": return gr.update(value="", visible=False), gr.update(visible=False),\
|
| 710 |
gr.update(value="", visible=False), gr.update(value="")
|
| 711 |
path = Path(lora_gui)
|
| 712 |
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
| 713 |
+
if not new_path.stem in loras_dict.keys() and not str(path) in set(get_lora_model_list()):
|
| 714 |
return gr.update(value="", visible=False), gr.update(visible=False),\
|
| 715 |
gr.update(value="", visible=False), gr.update(value="")
|
| 716 |
if not new_path.exists():
|
|
|
|
| 721 |
value = "None"
|
| 722 |
md = "None"
|
| 723 |
flag = False
|
| 724 |
+
items = loras_dict.get(basename, None)
|
| 725 |
if items == None:
|
| 726 |
items = get_civitai_info(str(new_path))
|
| 727 |
if items != None:
|
| 728 |
+
loras_dict[basename] = items
|
| 729 |
flag = True
|
| 730 |
if items and items[2] != "":
|
| 731 |
tag = items[0]
|
|
|
|
| 778 |
update_lora_dict(str(newpath))
|
| 779 |
|
| 780 |
new_lora_model_list = get_lora_model_list()
|
| 781 |
+
new_lora_tupled_list = get_all_lora_tupled_list()
|
| 782 |
|
| 783 |
return gr.update(
|
| 784 |
+
choices=new_lora_tupled_list, value=new_lora_model_list[-1]
|
| 785 |
), gr.update(
|
| 786 |
+
choices=new_lora_tupled_list
|
| 787 |
), gr.update(
|
| 788 |
+
choices=new_lora_tupled_list
|
| 789 |
), gr.update(
|
| 790 |
+
choices=new_lora_tupled_list
|
| 791 |
), gr.update(
|
| 792 |
+
choices=new_lora_tupled_list
|
| 793 |
+
)
|
| 794 |
|
| 795 |
|
| 796 |
def search_lora_on_civitai(query: str, allow_model: list[str]):
|
|
|
|
| 858 |
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
| 859 |
|
| 860 |
|
| 861 |
+
def find_similar_lora(q: str):
|
| 862 |
+
from rapidfuzz.process import extractOne
|
| 863 |
+
from rapidfuzz.utils import default_process
|
| 864 |
+
query = to_lora_key(q)
|
| 865 |
+
print(f"Finding <lora:{query}:...>...")
|
| 866 |
+
keys = list(private_lora_dict.keys())
|
| 867 |
+
values = [x[2] for x in list(private_lora_dict.values())]
|
| 868 |
+
s = default_process(query)
|
| 869 |
+
e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0)
|
| 870 |
+
key = ""
|
| 871 |
+
if e1:
|
| 872 |
+
e = e1[0]
|
| 873 |
+
if e in set(keys): key = e
|
| 874 |
+
elif e in set(values): key = keys[values.index(e)]
|
| 875 |
+
if key:
|
| 876 |
+
path = to_lora_path(key)
|
| 877 |
+
new_path = to_lora_path(query)
|
| 878 |
+
if not Path(path).exists():
|
| 879 |
+
if not Path(new_path).exists(): download_private_file_from_somewhere(path, True)
|
| 880 |
+
if Path(path).exists() and copy_lora(path, new_path): return new_path
|
| 881 |
+
print(f"Finding <lora:{query}:...> on Civitai...")
|
| 882 |
+
civitai_query = Path(query).stem if Path(query).is_file() else query
|
| 883 |
+
civitai_query = civitai_query.replace("_", " ").replace("-", " ")
|
| 884 |
+
base_model = ["Pony", "SDXL 1.0"]
|
| 885 |
+
items = search_lora_on_civitai(civitai_query, base_model, 1)
|
| 886 |
+
if items:
|
| 887 |
+
item = items[0]
|
| 888 |
+
path = download_lora(item['dl_url'])
|
| 889 |
+
new_path = query if Path(query).is_file() else to_lora_path(query)
|
| 890 |
+
if path and copy_lora(path, new_path): return new_path
|
| 891 |
+
return None
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
def change_interface_mode(mode: str):
|
| 895 |
+
if mode == "Fast":
|
| 896 |
+
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
| 897 |
+
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
|
| 898 |
+
gr.update(visible=True), gr.update(value="Fast")
|
| 899 |
+
elif mode == "Simple": # t2i mode
|
| 900 |
+
return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
| 901 |
+
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\
|
| 902 |
+
gr.update(visible=False), gr.update(value="Standard")
|
| 903 |
+
elif mode == "LoRA": # t2i LoRA mode
|
| 904 |
+
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\
|
| 905 |
+
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\
|
| 906 |
+
gr.update(visible=False), gr.update(value="Standard")
|
| 907 |
+
else: # Standard
|
| 908 |
+
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
| 909 |
+
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
|
| 910 |
+
gr.update(visible=True), gr.update(value="Standard")
|
| 911 |
+
|
| 912 |
+
|
| 913 |
quality_prompt_list = [
|
| 914 |
{
|
| 915 |
"name": "None",
|
|
|
|
| 1008 |
]
|
| 1009 |
|
| 1010 |
|
| 1011 |
+
optimization_list = {
|
| 1012 |
+
"None": [28, 7., 'Euler a', False, 'None', 1.],
|
| 1013 |
+
"Default": [28, 7., 'Euler a', False, 'None', 1.],
|
| 1014 |
+
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
|
| 1015 |
+
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
|
| 1016 |
+
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
|
| 1017 |
+
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
|
| 1018 |
+
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
|
| 1019 |
+
"Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.],
|
| 1020 |
+
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
|
| 1021 |
+
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
|
| 1022 |
+
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
|
| 1023 |
+
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
|
| 1024 |
+
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
|
| 1025 |
+
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
|
| 1026 |
+
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
|
| 1027 |
+
}
|
| 1028 |
+
|
| 1029 |
+
|
| 1030 |
+
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui):
|
| 1031 |
+
if not opt in list(optimization_list.keys()): opt = "None"
|
| 1032 |
+
def_steps_gui = 28
|
| 1033 |
+
def_cfg_gui = 7.
|
| 1034 |
+
steps = optimization_list.get(opt, "None")[0]
|
| 1035 |
+
cfg = optimization_list.get(opt, "None")[1]
|
| 1036 |
+
sampler = optimization_list.get(opt, "None")[2]
|
| 1037 |
+
clip_skip = optimization_list.get(opt, "None")[3]
|
| 1038 |
+
lora = optimization_list.get(opt, "None")[4]
|
| 1039 |
+
lora_scale = optimization_list.get(opt, "None")[5]
|
| 1040 |
+
if opt == "None":
|
| 1041 |
+
steps = max(steps_gui, def_steps_gui)
|
| 1042 |
+
cfg = max(cfg_gui, def_cfg_gui)
|
| 1043 |
+
clip_skip = clip_skip_gui
|
| 1044 |
+
elif opt == "SPO" or opt == "DPO":
|
| 1045 |
+
steps = max(steps_gui, def_steps_gui)
|
| 1046 |
+
cfg = max(cfg_gui, def_cfg_gui)
|
| 1047 |
+
|
| 1048 |
+
return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\
|
| 1049 |
+
gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale),
|
| 1050 |
+
|
| 1051 |
+
|
| 1052 |
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
|
| 1053 |
preset_sampler_setting = {
|
| 1054 |
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"],
|
|
|
|
| 1220 |
tag = str(tag).strip()
|
| 1221 |
if tag and not tag in ti_tags:
|
| 1222 |
prompts.append(tag)
|
|
|
|
| 1223 |
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else []
|
| 1224 |
neg_prompts = []
|
| 1225 |
for tag in ntags:
|
| 1226 |
tag = str(tag).strip()
|
| 1227 |
if tag and not tag in ti_tags:
|
| 1228 |
neg_prompts.append(tag)
|
|
|
|
| 1229 |
ti_prompts = []
|
| 1230 |
ti_neg_prompts = []
|
| 1231 |
for ti in textual_inversion_gui:
|
|
|
|
| 1235 |
ti_prompts.append(tokens[0])
|
| 1236 |
else: # negative prompt (default)
|
| 1237 |
ti_neg_prompts.append(tokens[0])
|
|
|
|
| 1238 |
empty = [""]
|
| 1239 |
prompt = ", ".join(prompts + ti_prompts + empty)
|
| 1240 |
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty)
|
|
|
|
| 1241 |
return gr.update(value=prompt), gr.update(value=neg_prompt),
|
| 1242 |
|
| 1243 |
|
requirements.txt
CHANGED
|
@@ -13,4 +13,5 @@ huggingface_hub
|
|
| 13 |
httpx==0.13.3
|
| 14 |
httpcore
|
| 15 |
googletrans==4.0.0rc1
|
| 16 |
-
timm
|
|
|
|
|
|
| 13 |
httpx==0.13.3
|
| 14 |
httpcore
|
| 15 |
googletrans==4.0.0rc1
|
| 16 |
+
timm
|
| 17 |
+
rapidfuzz
|