Spaces:
Running
on
Zero
Running
on
Zero
Upload 6 files
Browse files- app.py +252 -167
- constants.py +77 -82
- image_processor.py +130 -0
- modutils.py +65 -21
- requirements.txt +1 -1
- utils.py +4 -0
app.py
CHANGED
|
@@ -5,9 +5,9 @@ from stablepy import (
|
|
| 5 |
SCHEDULE_TYPE_OPTIONS,
|
| 6 |
SCHEDULE_PREDICTION_TYPE_OPTIONS,
|
| 7 |
check_scheduler_compatibility,
|
|
|
|
| 8 |
)
|
| 9 |
from constants import (
|
| 10 |
-
PREPROCESSOR_CONTROLNET,
|
| 11 |
TASK_STABLEPY,
|
| 12 |
TASK_MODEL_LIST,
|
| 13 |
UPSCALER_DICT_GUI,
|
|
@@ -17,6 +17,7 @@ from constants import (
|
|
| 17 |
SDXL_TASK,
|
| 18 |
MODEL_TYPE_TASK,
|
| 19 |
POST_PROCESSING_SAMPLER,
|
|
|
|
| 20 |
|
| 21 |
)
|
| 22 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
@@ -42,15 +43,18 @@ from utils import (
|
|
| 42 |
html_template_message,
|
| 43 |
escape_html,
|
| 44 |
)
|
|
|
|
| 45 |
from datetime import datetime
|
| 46 |
import gradio as gr
|
| 47 |
import logging
|
| 48 |
import diffusers
|
| 49 |
import warnings
|
| 50 |
from stablepy import logger
|
|
|
|
| 51 |
# import urllib.parse
|
| 52 |
|
| 53 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
| 54 |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
| 55 |
print(os.getenv("SPACES_ZERO_GPU"))
|
| 56 |
|
|
@@ -61,7 +65,7 @@ from modutils import (list_uniq, download_private_repo, get_model_id_list, get_t
|
|
| 61 |
update_civitai_selection, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
|
| 62 |
set_textual_inversion_prompt, get_model_pipeline, change_interface_mode, get_t2i_model_info,
|
| 63 |
get_tupled_model_list, save_gallery_images, save_gallery_history, set_optimization, set_sampler_settings,
|
| 64 |
-
set_quick_presets, process_style_prompt, optimization_list, save_images, download_things,
|
| 65 |
preset_styles, preset_quality, preset_sampler_setting, translate_to_en, EXAMPLES_GUI, RESOURCES)
|
| 66 |
from env import (HF_TOKEN, CIVITAI_API_KEY, HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
| 67 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
|
@@ -116,21 +120,25 @@ def get_embed_list(pipeline_name):
|
|
| 116 |
|
| 117 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
#######################
|
| 121 |
# GUI
|
| 122 |
#######################
|
| 123 |
-
import gradio as gr
|
| 124 |
-
import logging
|
| 125 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
| 126 |
-
import diffusers
|
| 127 |
diffusers.utils.logging.set_verbosity(40)
|
| 128 |
-
import warnings
|
| 129 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
| 130 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
| 131 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
| 132 |
## BEGIN MOD
|
| 133 |
-
from stablepy import logger
|
| 134 |
#logger.setLevel(logging.CRITICAL)
|
| 135 |
logger.setLevel(logging.DEBUG)
|
| 136 |
|
|
@@ -173,12 +181,14 @@ class GuiSD:
|
|
| 173 |
] + [model_name]
|
| 174 |
print(self.inventory)
|
| 175 |
|
| 176 |
-
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
| 177 |
-
|
| 178 |
-
self.update_storage_models()
|
| 179 |
|
| 180 |
# download link model > model_name
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
vae_model = vae_model if vae_model != "None" else None
|
| 183 |
model_type = get_model_type(model_name)
|
| 184 |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
|
@@ -230,17 +240,19 @@ class GuiSD:
|
|
| 230 |
vae_model=vae_model,
|
| 231 |
type_model_precision=dtype_model,
|
| 232 |
retain_task_model_in_cache=False,
|
|
|
|
| 233 |
device="cpu",
|
|
|
|
| 234 |
)
|
|
|
|
| 235 |
else:
|
| 236 |
-
|
| 237 |
if self.model.base_model_id != model_name:
|
| 238 |
load_now_time = datetime.now()
|
| 239 |
elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0)
|
| 240 |
|
| 241 |
-
if elapsed_time <=
|
| 242 |
print("Waiting for the previous model's time ops...")
|
| 243 |
-
time.sleep(
|
| 244 |
|
| 245 |
self.model.device = torch.device("cpu")
|
| 246 |
self.model.load_pipe(
|
|
@@ -249,6 +261,7 @@ class GuiSD:
|
|
| 249 |
vae_model=vae_model,
|
| 250 |
type_model_precision=dtype_model,
|
| 251 |
retain_task_model_in_cache=False,
|
|
|
|
| 252 |
)
|
| 253 |
|
| 254 |
end_time = time.time()
|
|
@@ -285,6 +298,10 @@ class GuiSD:
|
|
| 285 |
lora_scale4,
|
| 286 |
lora5,
|
| 287 |
lora_scale5,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
sampler,
|
| 289 |
schedule_type,
|
| 290 |
schedule_prediction_type,
|
|
@@ -305,6 +322,8 @@ class GuiSD:
|
|
| 305 |
high_threshold,
|
| 306 |
value_threshold,
|
| 307 |
distance_threshold,
|
|
|
|
|
|
|
| 308 |
controlnet_output_scaling_in_unet,
|
| 309 |
controlnet_start_threshold,
|
| 310 |
controlnet_stop_threshold,
|
|
@@ -321,6 +340,9 @@ class GuiSD:
|
|
| 321 |
hires_negative_prompt,
|
| 322 |
hires_before_adetailer,
|
| 323 |
hires_after_adetailer,
|
|
|
|
|
|
|
|
|
|
| 324 |
loop_generation,
|
| 325 |
leave_progress_bar,
|
| 326 |
disable_progress_bar,
|
|
@@ -362,6 +384,7 @@ class GuiSD:
|
|
| 362 |
mask_blur_b,
|
| 363 |
mask_padding_b,
|
| 364 |
retain_task_cache_gui,
|
|
|
|
| 365 |
image_ip1,
|
| 366 |
mask_ip1,
|
| 367 |
model_ip1,
|
|
@@ -378,7 +401,7 @@ class GuiSD:
|
|
| 378 |
yield info_state, gr.update(), gr.update()
|
| 379 |
|
| 380 |
vae_model = vae_model if vae_model != "None" else None
|
| 381 |
-
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
| 382 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 383 |
msg_lora = ""
|
| 384 |
|
|
@@ -386,9 +409,9 @@ class GuiSD:
|
|
| 386 |
loras_list = [s if s else "None" for s in loras_list]
|
| 387 |
global lora_model_list
|
| 388 |
lora_model_list = get_lora_model_list()
|
| 389 |
-
lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5 = \
|
| 390 |
set_prompt_loras(prompt, syntax_weights, model_name, lora1, lora_scale1, lora2, lora_scale2, lora3,
|
| 391 |
-
lora_scale3, lora4, lora_scale4, lora5, lora_scale5)
|
| 392 |
## END MOD
|
| 393 |
|
| 394 |
print("Config model:", model_name, vae_model, loras_list)
|
|
@@ -490,6 +513,8 @@ class GuiSD:
|
|
| 490 |
"high_threshold": high_threshold,
|
| 491 |
"value_threshold": value_threshold,
|
| 492 |
"distance_threshold": distance_threshold,
|
|
|
|
|
|
|
| 493 |
"lora_A": lora1 if lora1 != "None" else None,
|
| 494 |
"lora_scale_A": lora_scale1,
|
| 495 |
"lora_B": lora2 if lora2 != "None" else None,
|
|
@@ -500,6 +525,10 @@ class GuiSD:
|
|
| 500 |
"lora_scale_D": lora_scale4,
|
| 501 |
"lora_E": lora5 if lora5 != "None" else None,
|
| 502 |
"lora_scale_E": lora_scale5,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
## BEGIN MOD
|
| 504 |
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
|
| 505 |
## END MOD
|
|
@@ -543,6 +572,8 @@ class GuiSD:
|
|
| 543 |
"hires_sampler": hires_sampler,
|
| 544 |
"hires_before_adetailer": hires_before_adetailer,
|
| 545 |
"hires_after_adetailer": hires_after_adetailer,
|
|
|
|
|
|
|
| 546 |
"ip_adapter_image": params_ip_img,
|
| 547 |
"ip_adapter_mask": params_ip_msk,
|
| 548 |
"ip_adapter_model": params_ip_model,
|
|
@@ -550,8 +581,12 @@ class GuiSD:
|
|
| 550 |
"ip_adapter_scale": params_ip_scale,
|
| 551 |
}
|
| 552 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
self.model.device = torch.device("cuda:0")
|
| 554 |
-
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] *
|
| 555 |
self.model.pipe.transformer.to(self.model.device)
|
| 556 |
print("transformer to cuda")
|
| 557 |
|
|
@@ -579,7 +614,7 @@ class GuiSD:
|
|
| 579 |
if msg_lora:
|
| 580 |
info_images += msg_lora
|
| 581 |
|
| 582 |
-
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[
|
| 583 |
|
| 584 |
download_links = "<br>".join(
|
| 585 |
[
|
|
@@ -614,37 +649,38 @@ def dummy_gpu():
|
|
| 614 |
|
| 615 |
|
| 616 |
def sd_gen_generate_pipeline(*args):
|
| 617 |
-
|
| 618 |
gpu_duration_arg = int(args[-1]) if args[-1] else 59
|
| 619 |
verbose_arg = int(args[-2])
|
| 620 |
load_lora_cpu = args[-3]
|
| 621 |
generation_args = args[:-3]
|
| 622 |
lora_list = [
|
| 623 |
None if item == "None" or item == "" else item # MOD
|
| 624 |
-
for item in [args[7], args[9], args[11], args[13], args[15]]
|
| 625 |
]
|
| 626 |
-
lora_status = [None] *
|
| 627 |
|
| 628 |
msg_load_lora = "Updating LoRAs in GPU..."
|
| 629 |
if load_lora_cpu:
|
| 630 |
-
msg_load_lora = "Updating LoRAs in CPU
|
| 631 |
|
| 632 |
-
if lora_list != sd_gen.model.lora_memory and lora_list != [None] *
|
| 633 |
yield msg_load_lora, gr.update(), gr.update()
|
| 634 |
|
| 635 |
# Load lora in CPU
|
| 636 |
if load_lora_cpu:
|
| 637 |
-
lora_status = sd_gen.model.
|
| 638 |
lora_A=lora_list[0], lora_scale_A=args[8],
|
| 639 |
lora_B=lora_list[1], lora_scale_B=args[10],
|
| 640 |
lora_C=lora_list[2], lora_scale_C=args[12],
|
| 641 |
lora_D=lora_list[3], lora_scale_D=args[14],
|
| 642 |
lora_E=lora_list[4], lora_scale_E=args[16],
|
|
|
|
|
|
|
| 643 |
)
|
| 644 |
print(lora_status)
|
| 645 |
|
| 646 |
-
sampler_name = args[
|
| 647 |
-
schedule_type_name = args[
|
| 648 |
_, _, msg_sampler = check_scheduler_compatibility(
|
| 649 |
sd_gen.model.class_name, sampler_name, schedule_type_name
|
| 650 |
)
|
|
@@ -658,7 +694,7 @@ def sd_gen_generate_pipeline(*args):
|
|
| 658 |
elif status is not None:
|
| 659 |
gr.Warning(f"Failed to load LoRA: {lora}")
|
| 660 |
|
| 661 |
-
if lora_status == [None] *
|
| 662 |
lora_cache_msg = ", ".join(
|
| 663 |
str(x) for x in sd_gen.model.lora_memory if x is not None
|
| 664 |
)
|
|
@@ -715,6 +751,7 @@ def esrgan_upscale(image, upscaler_name, upscaler_size):
|
|
| 715 |
return image_path
|
| 716 |
|
| 717 |
|
|
|
|
| 718 |
dynamic_gpu_duration.zerogpu = True
|
| 719 |
sd_gen_generate_pipeline.zerogpu = True
|
| 720 |
sd_gen = GuiSD()
|
|
@@ -740,7 +777,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 740 |
with gr.Column():
|
| 741 |
with gr.Tab("Generation"):
|
| 742 |
with gr.Row():
|
| 743 |
-
with gr.Column(scale=
|
| 744 |
|
| 745 |
def update_task_options(model_name, task_name):
|
| 746 |
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]
|
|
@@ -781,7 +818,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 781 |
generate_from_image_btn_gui = gr.Button(value="GENERATE TAGS FROM IMAGE")
|
| 782 |
prompt_gui = gr.Textbox(lines=6, placeholder="1girl, solo, ...", label="Prompt", show_copy_button=True)
|
| 783 |
with gr.Accordion("Negative prompt, etc.", open=False) as menu_negative:
|
| 784 |
-
neg_prompt_gui = gr.Textbox(lines=3, placeholder="
|
| 785 |
translate_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
|
| 786 |
with gr.Row():
|
| 787 |
insert_prompt_gui = gr.Radio(label="Insert reccomended positive / negative prompt", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True)
|
|
@@ -819,11 +856,14 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 819 |
label="Generated images",
|
| 820 |
show_label=False,
|
| 821 |
elem_id="gallery",
|
| 822 |
-
columns=[2],
|
| 823 |
-
|
|
|
|
|
|
|
| 824 |
object_fit="contain",
|
| 825 |
# height="auto",
|
| 826 |
interactive=False,
|
|
|
|
| 827 |
preview=False,
|
| 828 |
show_share_button=False,
|
| 829 |
show_download_button=True,
|
|
@@ -846,7 +886,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 846 |
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
| 847 |
with gr.Column():
|
| 848 |
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
|
| 849 |
-
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU
|
| 850 |
|
| 851 |
with gr.Column(scale=1):
|
| 852 |
with gr.Accordion("Generation settings", open=False, visible=True) as menu_gen:
|
|
@@ -855,6 +895,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 855 |
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
|
| 856 |
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Steps")
|
| 857 |
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7.0, label="CFG")
|
|
|
|
| 858 |
with gr.Row():
|
| 859 |
seed_gui = gr.Number(minimum=-1, maximum=2**32-1, value=-1, label="Seed")
|
| 860 |
pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
|
|
@@ -864,118 +905,119 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 864 |
with gr.Row():
|
| 865 |
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler")
|
| 866 |
schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
|
|
|
|
| 867 |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
|
| 868 |
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
|
| 869 |
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 915 |
val = True
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
val
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
return gr.update(value=""), gr.update(value="")
|
| 963 |
-
clear_prompt_gui.click(
|
| 964 |
-
run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui]
|
| 965 |
-
)
|
| 966 |
-
|
| 967 |
-
def run_set_random_seed():
|
| 968 |
-
return -1
|
| 969 |
-
set_random_seed.click(
|
| 970 |
-
run_set_random_seed, [], seed_gui
|
| 971 |
-
)
|
| 972 |
|
| 973 |
with gr.Accordion("LoRA", open=False, visible=True) as menu_lora:
|
| 974 |
-
def lora_dropdown(label):
|
| 975 |
-
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
|
| 976 |
|
| 977 |
-
def lora_scale_slider(label):
|
| 978 |
-
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label)
|
| 979 |
|
| 980 |
def lora_textbox(label):
|
| 981 |
return gr.Textbox(label=label, info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
|
@@ -1021,6 +1063,22 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1021 |
lora5_info_gui = lora_textbox("LoRA5 prompts")
|
| 1022 |
lora5_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
|
| 1023 |
lora5_desc_gui = gr.Markdown(value="", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1024 |
with gr.Accordion("From URL", open=True, visible=True):
|
| 1025 |
with gr.Row():
|
| 1026 |
search_civitai_basemodel_lora = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"])
|
|
@@ -1037,7 +1095,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1037 |
search_civitai_result_lora = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
| 1038 |
with gr.Row():
|
| 1039 |
text_lora = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1, scale=4)
|
| 1040 |
-
romanize_text = gr.Checkbox(value=False, label="Transliterate name", scale=1)
|
| 1041 |
button_lora = gr.Button("Get and Refresh the LoRA Lists")
|
| 1042 |
new_lora_status = gr.HTML()
|
| 1043 |
with gr.Accordion("From Local", open=True, visible=True):
|
|
@@ -1055,6 +1113,9 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1055 |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
|
| 1056 |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
|
| 1057 |
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
|
|
|
|
|
|
|
|
|
|
| 1058 |
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
|
| 1059 |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
|
| 1060 |
|
|
@@ -1121,14 +1182,23 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1121 |
minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
|
| 1122 |
info="The maximum proportional size of the generated image based on the uploaded image."
|
| 1123 |
)
|
| 1124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1125 |
|
| 1126 |
def change_preprocessor_choices(task):
|
| 1127 |
task = TASK_STABLEPY[task]
|
| 1128 |
-
if task in
|
| 1129 |
-
choices_task =
|
| 1130 |
else:
|
| 1131 |
-
choices_task =
|
| 1132 |
return gr.update(choices=choices_task, value=choices_task[0])
|
| 1133 |
|
| 1134 |
task_gui.change(
|
|
@@ -1136,16 +1206,12 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1136 |
[task_gui],
|
| 1137 |
[preprocessor_name_gui],
|
| 1138 |
)
|
|
|
|
| 1139 |
with gr.Row():
|
| 1140 |
-
|
| 1141 |
-
|
| 1142 |
-
|
| 1143 |
-
|
| 1144 |
-
with gr.Row():
|
| 1145 |
-
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="Hough distance threshold (MLSD)")
|
| 1146 |
-
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
|
| 1147 |
-
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
|
| 1148 |
-
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
|
| 1149 |
|
| 1150 |
with gr.Accordion("IP-Adapter", open=False, visible=True) as menu_ipa:
|
| 1151 |
|
|
@@ -1204,7 +1270,6 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1204 |
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])
|
| 1205 |
|
| 1206 |
with gr.Accordion("Other settings", open=False, visible=True) as menu_other:
|
| 1207 |
-
schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
|
| 1208 |
with gr.Row():
|
| 1209 |
save_generated_images_gui = gr.Checkbox(value=False, label="Save Generated Images")
|
| 1210 |
filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1)
|
|
@@ -1289,15 +1354,15 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1289 |
# enable crop (or disable it)
|
| 1290 |
# transforms=["crop"],
|
| 1291 |
brush=gr.Brush(
|
| 1292 |
-
|
| 1293 |
-
|
| 1294 |
-
|
| 1295 |
-
|
| 1296 |
-
|
| 1297 |
-
|
| 1298 |
-
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
),
|
| 1302 |
eraser=gr.Eraser(default_size="16")
|
| 1303 |
)
|
|
@@ -1345,6 +1410,9 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1345 |
outputs=[result_up_tab],
|
| 1346 |
)
|
| 1347 |
|
|
|
|
|
|
|
|
|
|
| 1348 |
## BEGIN MOD
|
| 1349 |
interface_mode_gui.change(
|
| 1350 |
change_interface_mode,
|
|
@@ -1379,15 +1447,19 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1379 |
gr.on(
|
| 1380 |
triggers=[lora1_gui.change, lora_scale_1_gui.change, lora2_gui.change, lora_scale_2_gui.change,
|
| 1381 |
lora3_gui.change, lora_scale_3_gui.change, lora4_gui.change, lora_scale_4_gui.change,
|
| 1382 |
-
lora5_gui.change, lora_scale_5_gui.change,
|
|
|
|
| 1383 |
fn=update_loras,
|
| 1384 |
inputs=[prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui,
|
| 1385 |
-
lora3_gui, lora_scale_3_gui, lora4_gui, lora_scale_4_gui, lora5_gui, lora_scale_5_gui
|
|
|
|
| 1386 |
outputs=[prompt_gui, lora1_gui, lora_scale_1_gui, lora1_info_gui, lora1_copy_gui, lora1_desc_gui,
|
| 1387 |
lora2_gui, lora_scale_2_gui, lora2_info_gui, lora2_copy_gui, lora2_desc_gui,
|
| 1388 |
lora3_gui, lora_scale_3_gui, lora3_info_gui, lora3_copy_gui, lora3_desc_gui,
|
| 1389 |
lora4_gui, lora_scale_4_gui, lora4_info_gui, lora4_copy_gui, lora4_desc_gui,
|
| 1390 |
-
lora5_gui, lora_scale_5_gui, lora5_info_gui, lora5_copy_gui, lora5_desc_gui
|
|
|
|
|
|
|
| 1391 |
queue=False,
|
| 1392 |
trigger_mode="once",
|
| 1393 |
)
|
|
@@ -1396,6 +1468,8 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1396 |
lora3_copy_gui.click(apply_lora_prompt, [prompt_gui, lora3_info_gui], [prompt_gui], queue=False)
|
| 1397 |
lora4_copy_gui.click(apply_lora_prompt, [prompt_gui, lora4_info_gui], [prompt_gui], queue=False)
|
| 1398 |
lora5_copy_gui.click(apply_lora_prompt, [prompt_gui, lora5_info_gui], [prompt_gui], queue=False)
|
|
|
|
|
|
|
| 1399 |
gr.on(
|
| 1400 |
triggers=[search_civitai_button_lora.click, search_civitai_query_lora.submit],
|
| 1401 |
fn=search_civitai_lora,
|
|
@@ -1407,9 +1481,9 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1407 |
)
|
| 1408 |
search_civitai_result_lora.change(select_civitai_lora, [search_civitai_result_lora], [text_lora, search_civitai_desc_lora], queue=False, scroll_to_output=True)
|
| 1409 |
search_civitai_gallery_lora.select(update_civitai_selection, None, [search_civitai_result_lora], queue=False, show_api=False)
|
| 1410 |
-
button_lora.click(get_my_lora, [text_lora, romanize_text], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, new_lora_status], scroll_to_output=True)
|
| 1411 |
upload_button_lora.upload(upload_file_lora, [upload_button_lora], [file_output_lora, upload_button_lora]).success(
|
| 1412 |
-
move_file_lora, [file_output_lora], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui], scroll_to_output=True)
|
| 1413 |
|
| 1414 |
use_textual_inversion_gui.change(set_textual_inversion_prompt, [use_textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui], [prompt_gui, neg_prompt_gui])
|
| 1415 |
|
|
@@ -1454,7 +1528,8 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1454 |
inputs=[
|
| 1455 |
model_name_gui,
|
| 1456 |
vae_model_gui,
|
| 1457 |
-
task_gui
|
|
|
|
| 1458 |
],
|
| 1459 |
outputs=[load_model_gui],
|
| 1460 |
queue=True,
|
|
@@ -1479,6 +1554,10 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1479 |
lora_scale_4_gui,
|
| 1480 |
lora5_gui,
|
| 1481 |
lora_scale_5_gui,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1482 |
sampler_gui,
|
| 1483 |
schedule_type_gui,
|
| 1484 |
schedule_prediction_type_gui,
|
|
@@ -1499,6 +1578,8 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1499 |
high_threshold_gui,
|
| 1500 |
value_threshold_gui,
|
| 1501 |
distance_threshold_gui,
|
|
|
|
|
|
|
| 1502 |
control_net_output_scaling_gui,
|
| 1503 |
control_net_start_threshold_gui,
|
| 1504 |
control_net_stop_threshold_gui,
|
|
@@ -1515,6 +1596,9 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1515 |
hires_negative_prompt_gui,
|
| 1516 |
hires_before_adetailer_gui,
|
| 1517 |
hires_after_adetailer_gui,
|
|
|
|
|
|
|
|
|
|
| 1518 |
loop_generation_gui,
|
| 1519 |
leave_progress_bar_gui,
|
| 1520 |
disable_progress_bar_gui,
|
|
@@ -1556,6 +1640,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', elem_id="main", fill_width=True, cs
|
|
| 1556 |
mask_blur_b_gui,
|
| 1557 |
mask_padding_b_gui,
|
| 1558 |
retain_task_cache_gui,
|
|
|
|
| 1559 |
image_ip1,
|
| 1560 |
mask_ip1,
|
| 1561 |
model_ip1,
|
|
|
|
| 5 |
SCHEDULE_TYPE_OPTIONS,
|
| 6 |
SCHEDULE_PREDICTION_TYPE_OPTIONS,
|
| 7 |
check_scheduler_compatibility,
|
| 8 |
+
TASK_AND_PREPROCESSORS,
|
| 9 |
)
|
| 10 |
from constants import (
|
|
|
|
| 11 |
TASK_STABLEPY,
|
| 12 |
TASK_MODEL_LIST,
|
| 13 |
UPSCALER_DICT_GUI,
|
|
|
|
| 17 |
SDXL_TASK,
|
| 18 |
MODEL_TYPE_TASK,
|
| 19 |
POST_PROCESSING_SAMPLER,
|
| 20 |
+
DIFFUSERS_CONTROLNET_MODEL,
|
| 21 |
|
| 22 |
)
|
| 23 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
|
| 43 |
html_template_message,
|
| 44 |
escape_html,
|
| 45 |
)
|
| 46 |
+
from image_processor import preprocessor_tab
|
| 47 |
from datetime import datetime
|
| 48 |
import gradio as gr
|
| 49 |
import logging
|
| 50 |
import diffusers
|
| 51 |
import warnings
|
| 52 |
from stablepy import logger
|
| 53 |
+
from diffusers import FluxPipeline
|
| 54 |
# import urllib.parse
|
| 55 |
|
| 56 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 57 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 58 |
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
| 59 |
print(os.getenv("SPACES_ZERO_GPU"))
|
| 60 |
|
|
|
|
| 65 |
update_civitai_selection, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
|
| 66 |
set_textual_inversion_prompt, get_model_pipeline, change_interface_mode, get_t2i_model_info,
|
| 67 |
get_tupled_model_list, save_gallery_images, save_gallery_history, set_optimization, set_sampler_settings,
|
| 68 |
+
set_quick_presets, process_style_prompt, optimization_list, save_images, download_things, valid_model_name,
|
| 69 |
preset_styles, preset_quality, preset_sampler_setting, translate_to_en, EXAMPLES_GUI, RESOURCES)
|
| 70 |
from env import (HF_TOKEN, CIVITAI_API_KEY, HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
| 71 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
|
|
|
| 120 |
|
| 121 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
| 122 |
|
| 123 |
+
flux_repo = "camenduru/FLUX.1-dev-diffusers"
|
| 124 |
+
flux_pipe = FluxPipeline.from_pretrained(
|
| 125 |
+
flux_repo,
|
| 126 |
+
transformer=None,
|
| 127 |
+
torch_dtype=torch.bfloat16,
|
| 128 |
+
).to("cuda")
|
| 129 |
+
components = flux_pipe.components
|
| 130 |
+
components.pop("transformer", None)
|
| 131 |
+
delete_model(flux_repo)
|
| 132 |
|
| 133 |
#######################
|
| 134 |
# GUI
|
| 135 |
#######################
|
|
|
|
|
|
|
| 136 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
|
|
|
| 137 |
diffusers.utils.logging.set_verbosity(40)
|
|
|
|
| 138 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
| 139 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
| 140 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
| 141 |
## BEGIN MOD
|
|
|
|
| 142 |
#logger.setLevel(logging.CRITICAL)
|
| 143 |
logger.setLevel(logging.DEBUG)
|
| 144 |
|
|
|
|
| 181 |
] + [model_name]
|
| 182 |
print(self.inventory)
|
| 183 |
|
| 184 |
+
def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# download link model > model_name
|
| 187 |
|
| 188 |
+
model_name = valid_model_name(model_name) # MOD
|
| 189 |
+
|
| 190 |
+
self.update_storage_models()
|
| 191 |
+
|
| 192 |
vae_model = vae_model if vae_model != "None" else None
|
| 193 |
model_type = get_model_type(model_name)
|
| 194 |
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
|
|
|
| 240 |
vae_model=vae_model,
|
| 241 |
type_model_precision=dtype_model,
|
| 242 |
retain_task_model_in_cache=False,
|
| 243 |
+
controlnet_model=controlnet_model,
|
| 244 |
device="cpu",
|
| 245 |
+
env_components=components,
|
| 246 |
)
|
| 247 |
+
self.model.advanced_params(image_preprocessor_cuda_active=True)
|
| 248 |
else:
|
|
|
|
| 249 |
if self.model.base_model_id != model_name:
|
| 250 |
load_now_time = datetime.now()
|
| 251 |
elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0)
|
| 252 |
|
| 253 |
+
if elapsed_time <= 9:
|
| 254 |
print("Waiting for the previous model's time ops...")
|
| 255 |
+
time.sleep(9 - elapsed_time)
|
| 256 |
|
| 257 |
self.model.device = torch.device("cpu")
|
| 258 |
self.model.load_pipe(
|
|
|
|
| 261 |
vae_model=vae_model,
|
| 262 |
type_model_precision=dtype_model,
|
| 263 |
retain_task_model_in_cache=False,
|
| 264 |
+
controlnet_model=controlnet_model,
|
| 265 |
)
|
| 266 |
|
| 267 |
end_time = time.time()
|
|
|
|
| 298 |
lora_scale4,
|
| 299 |
lora5,
|
| 300 |
lora_scale5,
|
| 301 |
+
lora6,
|
| 302 |
+
lora_scale6,
|
| 303 |
+
lora7,
|
| 304 |
+
lora_scale7,
|
| 305 |
sampler,
|
| 306 |
schedule_type,
|
| 307 |
schedule_prediction_type,
|
|
|
|
| 322 |
high_threshold,
|
| 323 |
value_threshold,
|
| 324 |
distance_threshold,
|
| 325 |
+
recolor_gamma_correction,
|
| 326 |
+
tile_blur_sigma,
|
| 327 |
controlnet_output_scaling_in_unet,
|
| 328 |
controlnet_start_threshold,
|
| 329 |
controlnet_stop_threshold,
|
|
|
|
| 340 |
hires_negative_prompt,
|
| 341 |
hires_before_adetailer,
|
| 342 |
hires_after_adetailer,
|
| 343 |
+
hires_schedule_type,
|
| 344 |
+
hires_guidance_scale,
|
| 345 |
+
controlnet_model,
|
| 346 |
loop_generation,
|
| 347 |
leave_progress_bar,
|
| 348 |
disable_progress_bar,
|
|
|
|
| 384 |
mask_blur_b,
|
| 385 |
mask_padding_b,
|
| 386 |
retain_task_cache_gui,
|
| 387 |
+
guidance_rescale,
|
| 388 |
image_ip1,
|
| 389 |
mask_ip1,
|
| 390 |
model_ip1,
|
|
|
|
| 401 |
yield info_state, gr.update(), gr.update()
|
| 402 |
|
| 403 |
vae_model = vae_model if vae_model != "None" else None
|
| 404 |
+
loras_list = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 405 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
| 406 |
msg_lora = ""
|
| 407 |
|
|
|
|
| 409 |
loras_list = [s if s else "None" for s in loras_list]
|
| 410 |
global lora_model_list
|
| 411 |
lora_model_list = get_lora_model_list()
|
| 412 |
+
lora1, lora_scale1, lora2, lora_scale2, lora3, lora_scale3, lora4, lora_scale4, lora5, lora_scale5, lora6, lora_scale6, lora7, lora_scale7 = \
|
| 413 |
set_prompt_loras(prompt, syntax_weights, model_name, lora1, lora_scale1, lora2, lora_scale2, lora3,
|
| 414 |
+
lora_scale3, lora4, lora_scale4, lora5, lora_scale5, lora6, lora_scale6, lora7, lora_scale7)
|
| 415 |
## END MOD
|
| 416 |
|
| 417 |
print("Config model:", model_name, vae_model, loras_list)
|
|
|
|
| 513 |
"high_threshold": high_threshold,
|
| 514 |
"value_threshold": value_threshold,
|
| 515 |
"distance_threshold": distance_threshold,
|
| 516 |
+
"recolor_gamma_correction": float(recolor_gamma_correction),
|
| 517 |
+
"tile_blur_sigma": int(tile_blur_sigma),
|
| 518 |
"lora_A": lora1 if lora1 != "None" else None,
|
| 519 |
"lora_scale_A": lora_scale1,
|
| 520 |
"lora_B": lora2 if lora2 != "None" else None,
|
|
|
|
| 525 |
"lora_scale_D": lora_scale4,
|
| 526 |
"lora_E": lora5 if lora5 != "None" else None,
|
| 527 |
"lora_scale_E": lora_scale5,
|
| 528 |
+
"lora_F": lora6 if lora6 != "None" else None,
|
| 529 |
+
"lora_scale_F": lora_scale6,
|
| 530 |
+
"lora_G": lora7 if lora7 != "None" else None,
|
| 531 |
+
"lora_scale_G": lora_scale7,
|
| 532 |
## BEGIN MOD
|
| 533 |
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
|
| 534 |
## END MOD
|
|
|
|
| 572 |
"hires_sampler": hires_sampler,
|
| 573 |
"hires_before_adetailer": hires_before_adetailer,
|
| 574 |
"hires_after_adetailer": hires_after_adetailer,
|
| 575 |
+
"hires_schedule_type": hires_schedule_type,
|
| 576 |
+
"hires_guidance_scale": hires_guidance_scale,
|
| 577 |
"ip_adapter_image": params_ip_img,
|
| 578 |
"ip_adapter_mask": params_ip_msk,
|
| 579 |
"ip_adapter_model": params_ip_model,
|
|
|
|
| 581 |
"ip_adapter_scale": params_ip_scale,
|
| 582 |
}
|
| 583 |
|
| 584 |
+
# kwargs for diffusers pipeline
|
| 585 |
+
if guidance_rescale:
|
| 586 |
+
pipe_params["guidance_rescale"] = guidance_rescale
|
| 587 |
+
|
| 588 |
self.model.device = torch.device("cuda:0")
|
| 589 |
+
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras:
|
| 590 |
self.model.pipe.transformer.to(self.model.device)
|
| 591 |
print("transformer to cuda")
|
| 592 |
|
|
|
|
| 614 |
if msg_lora:
|
| 615 |
info_images += msg_lora
|
| 616 |
|
| 617 |
+
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[-1]) + "<br>-------<br>"
|
| 618 |
|
| 619 |
download_links = "<br>".join(
|
| 620 |
[
|
|
|
|
| 649 |
|
| 650 |
|
| 651 |
def sd_gen_generate_pipeline(*args):
|
|
|
|
| 652 |
gpu_duration_arg = int(args[-1]) if args[-1] else 59
|
| 653 |
verbose_arg = int(args[-2])
|
| 654 |
load_lora_cpu = args[-3]
|
| 655 |
generation_args = args[:-3]
|
| 656 |
lora_list = [
|
| 657 |
None if item == "None" or item == "" else item # MOD
|
| 658 |
+
for item in [args[7], args[9], args[11], args[13], args[15], args[17], args[19]]
|
| 659 |
]
|
| 660 |
+
lora_status = [None] * sd_gen.model.num_loras
|
| 661 |
|
| 662 |
msg_load_lora = "Updating LoRAs in GPU..."
|
| 663 |
if load_lora_cpu:
|
| 664 |
+
msg_load_lora = "Updating LoRAs in CPU..."
|
| 665 |
|
| 666 |
+
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * sd_gen.model.num_loras:
|
| 667 |
yield msg_load_lora, gr.update(), gr.update()
|
| 668 |
|
| 669 |
# Load lora in CPU
|
| 670 |
if load_lora_cpu:
|
| 671 |
+
lora_status = sd_gen.model.load_lora_on_the_fly(
|
| 672 |
lora_A=lora_list[0], lora_scale_A=args[8],
|
| 673 |
lora_B=lora_list[1], lora_scale_B=args[10],
|
| 674 |
lora_C=lora_list[2], lora_scale_C=args[12],
|
| 675 |
lora_D=lora_list[3], lora_scale_D=args[14],
|
| 676 |
lora_E=lora_list[4], lora_scale_E=args[16],
|
| 677 |
+
lora_F=lora_list[5], lora_scale_F=args[18],
|
| 678 |
+
lora_G=lora_list[6], lora_scale_G=args[20],
|
| 679 |
)
|
| 680 |
print(lora_status)
|
| 681 |
|
| 682 |
+
sampler_name = args[21]
|
| 683 |
+
schedule_type_name = args[22]
|
| 684 |
_, _, msg_sampler = check_scheduler_compatibility(
|
| 685 |
sd_gen.model.class_name, sampler_name, schedule_type_name
|
| 686 |
)
|
|
|
|
| 694 |
elif status is not None:
|
| 695 |
gr.Warning(f"Failed to load LoRA: {lora}")
|
| 696 |
|
| 697 |
+
if lora_status == [None] * sd_gen.model.num_loras and sd_gen.model.lora_memory != [None] * sd_gen.model.num_loras and load_lora_cpu:
|
| 698 |
lora_cache_msg = ", ".join(
|
| 699 |
str(x) for x in sd_gen.model.lora_memory if x is not None
|
| 700 |
)
|
|
|
|
| 751 |
return image_path
|
| 752 |
|
| 753 |
|
| 754 |
+
# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407
|
| 755 |
dynamic_gpu_duration.zerogpu = True
|
| 756 |
sd_gen_generate_pipeline.zerogpu = True
|
| 757 |
sd_gen = GuiSD()
|
|
|
|
| 777 |
with gr.Column():
|
| 778 |
with gr.Tab("Generation"):
|
| 779 |
with gr.Row():
|
| 780 |
+
with gr.Column(scale=1):
|
| 781 |
|
| 782 |
def update_task_options(model_name, task_name):
|
| 783 |
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]
|
|
|
|
| 818 |
generate_from_image_btn_gui = gr.Button(value="GENERATE TAGS FROM IMAGE")
|
| 819 |
prompt_gui = gr.Textbox(lines=6, placeholder="1girl, solo, ...", label="Prompt", show_copy_button=True)
|
| 820 |
with gr.Accordion("Negative prompt, etc.", open=False) as menu_negative:
|
| 821 |
+
neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt", value="lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, worst quality, low quality, very displeasing, (bad)", show_copy_button=True)
|
| 822 |
translate_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
|
| 823 |
with gr.Row():
|
| 824 |
insert_prompt_gui = gr.Radio(label="Insert reccomended positive / negative prompt", choices=["None", "Auto", "Animagine", "Pony"], value="Auto", interactive=True)
|
|
|
|
| 856 |
label="Generated images",
|
| 857 |
show_label=False,
|
| 858 |
elem_id="gallery",
|
| 859 |
+
#columns=[2],
|
| 860 |
+
columns=[1],
|
| 861 |
+
#rows=[2],
|
| 862 |
+
rows=[1],
|
| 863 |
object_fit="contain",
|
| 864 |
# height="auto",
|
| 865 |
interactive=False,
|
| 866 |
+
#preview=False,
|
| 867 |
preview=False,
|
| 868 |
show_share_button=False,
|
| 869 |
show_download_button=True,
|
|
|
|
| 886 |
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
| 887 |
with gr.Column():
|
| 888 |
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
|
| 889 |
+
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU")
|
| 890 |
|
| 891 |
with gr.Column(scale=1):
|
| 892 |
with gr.Accordion("Generation settings", open=False, visible=True) as menu_gen:
|
|
|
|
| 895 |
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
|
| 896 |
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Steps")
|
| 897 |
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7.0, label="CFG")
|
| 898 |
+
guidance_rescale_gui = gr.Slider(label="CFG rescale:", value=0., step=0.01, minimum=0., maximum=1.5)
|
| 899 |
with gr.Row():
|
| 900 |
seed_gui = gr.Number(minimum=-1, maximum=2**32-1, value=-1, label="Seed")
|
| 901 |
pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
|
|
|
|
| 905 |
with gr.Row():
|
| 906 |
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler")
|
| 907 |
schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
|
| 908 |
+
schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
|
| 909 |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
|
| 910 |
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
|
| 911 |
|
| 912 |
+
with gr.Row(equal_height=False):
|
| 913 |
+
|
| 914 |
+
def run_set_params_gui(base_prompt, name_model):
|
| 915 |
+
valid_receptors = { # default values
|
| 916 |
+
"prompt": gr.update(value=base_prompt),
|
| 917 |
+
"neg_prompt": gr.update(value=""),
|
| 918 |
+
"Steps": gr.update(value=30),
|
| 919 |
+
"width": gr.update(value=1024),
|
| 920 |
+
"height": gr.update(value=1024),
|
| 921 |
+
"Seed": gr.update(value=-1),
|
| 922 |
+
"Sampler": gr.update(value="Euler"),
|
| 923 |
+
"CFG scale": gr.update(value=7.), # cfg
|
| 924 |
+
"Clip skip": gr.update(value=True),
|
| 925 |
+
"Model": gr.update(value=name_model),
|
| 926 |
+
"Schedule type": gr.update(value="Automatic"),
|
| 927 |
+
"PAG": gr.update(value=.0),
|
| 928 |
+
"FreeU": gr.update(value=False),
|
| 929 |
+
}
|
| 930 |
+
valid_keys = list(valid_receptors.keys())
|
| 931 |
+
|
| 932 |
+
parameters = extract_parameters(base_prompt)
|
| 933 |
+
# print(parameters)
|
| 934 |
+
|
| 935 |
+
if "Sampler" in parameters:
|
| 936 |
+
value_sampler = parameters["Sampler"]
|
| 937 |
+
for s_type in SCHEDULE_TYPE_OPTIONS:
|
| 938 |
+
if s_type in value_sampler:
|
| 939 |
+
value_sampler = value_sampler.replace(s_type, "").strip()
|
| 940 |
+
parameters["Sampler"] = value_sampler
|
| 941 |
+
parameters["Schedule type"] = s_type
|
| 942 |
+
|
| 943 |
+
for key, val in parameters.items():
|
| 944 |
+
# print(val)
|
| 945 |
+
if key in valid_keys:
|
| 946 |
+
try:
|
| 947 |
+
if key == "Sampler":
|
| 948 |
+
if val not in scheduler_names:
|
| 949 |
+
continue
|
| 950 |
+
if key == "Schedule type":
|
| 951 |
+
if val not in SCHEDULE_TYPE_OPTIONS:
|
| 952 |
+
val = "Automatic"
|
| 953 |
+
elif key == "Clip skip":
|
| 954 |
+
if "," in str(val):
|
| 955 |
+
val = val.replace(",", "")
|
| 956 |
+
if int(val) >= 2:
|
| 957 |
+
val = True
|
| 958 |
+
if key == "prompt":
|
| 959 |
+
if ">" in val and "<" in val:
|
| 960 |
+
val = re.sub(r'<[^>]+>', '', val)
|
| 961 |
+
print("Removed LoRA written in the prompt")
|
| 962 |
+
if key in ["prompt", "neg_prompt"]:
|
| 963 |
+
val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
|
| 964 |
+
if key in ["Steps", "width", "height", "Seed"]:
|
| 965 |
+
val = int(val)
|
| 966 |
+
if key == "FreeU":
|
| 967 |
val = True
|
| 968 |
+
if key in ["CFG scale", "PAG"]:
|
| 969 |
+
val = float(val)
|
| 970 |
+
if key == "Model":
|
| 971 |
+
filtered_models = [m for m in model_list if val in m]
|
| 972 |
+
if filtered_models:
|
| 973 |
+
val = filtered_models[0]
|
| 974 |
+
else:
|
| 975 |
+
val = name_model
|
| 976 |
+
if key == "Seed":
|
| 977 |
+
continue
|
| 978 |
+
valid_receptors[key] = gr.update(value=val)
|
| 979 |
+
# print(val, type(val))
|
| 980 |
+
# print(valid_receptors)
|
| 981 |
+
except Exception as e:
|
| 982 |
+
print(str(e))
|
| 983 |
+
return [value for value in valid_receptors.values()]
|
| 984 |
+
|
| 985 |
+
set_params_gui.click(
|
| 986 |
+
run_set_params_gui, [prompt_gui, model_name_gui], [
|
| 987 |
+
prompt_gui,
|
| 988 |
+
neg_prompt_gui,
|
| 989 |
+
steps_gui,
|
| 990 |
+
img_width_gui,
|
| 991 |
+
img_height_gui,
|
| 992 |
+
seed_gui,
|
| 993 |
+
sampler_gui,
|
| 994 |
+
cfg_gui,
|
| 995 |
+
clip_skip_gui,
|
| 996 |
+
model_name_gui,
|
| 997 |
+
schedule_type_gui,
|
| 998 |
+
pag_scale_gui,
|
| 999 |
+
free_u_gui,
|
| 1000 |
+
],
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
def run_clear_prompt_gui():
|
| 1004 |
+
return gr.update(value=""), gr.update(value="")
|
| 1005 |
+
clear_prompt_gui.click(
|
| 1006 |
+
run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui]
|
| 1007 |
+
)
|
| 1008 |
+
|
| 1009 |
+
def run_set_random_seed():
|
| 1010 |
+
return -1
|
| 1011 |
+
set_random_seed.click(
|
| 1012 |
+
run_set_random_seed, [], seed_gui
|
| 1013 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1014 |
|
| 1015 |
with gr.Accordion("LoRA", open=False, visible=True) as menu_lora:
|
| 1016 |
+
def lora_dropdown(label, visible=True):
|
| 1017 |
+
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible)
|
| 1018 |
|
| 1019 |
+
def lora_scale_slider(label, visible=True):
|
| 1020 |
+
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label, visible=visible)
|
| 1021 |
|
| 1022 |
def lora_textbox(label):
|
| 1023 |
return gr.Textbox(label=label, info="Example of prompt:", value="None", show_copy_button=True, interactive=False, visible=False)
|
|
|
|
| 1063 |
lora5_info_gui = lora_textbox("LoRA5 prompts")
|
| 1064 |
lora5_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
|
| 1065 |
lora5_desc_gui = gr.Markdown(value="", visible=False)
|
| 1066 |
+
with gr.Column():
|
| 1067 |
+
lora6_gui = lora_dropdown("LoRA6", visible=False)
|
| 1068 |
+
lora_scale_6_gui = lora_scale_slider("LoRA Scale 6", visible=False)
|
| 1069 |
+
with gr.Row():
|
| 1070 |
+
with gr.Group():
|
| 1071 |
+
lora6_info_gui = lora_textbox("LoRA6 prompts")
|
| 1072 |
+
lora6_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
|
| 1073 |
+
lora6_desc_gui = gr.Markdown(value="", visible=False)
|
| 1074 |
+
with gr.Column():
|
| 1075 |
+
lora7_gui = lora_dropdown("LoRA7", visible=False)
|
| 1076 |
+
lora_scale_7_gui = lora_scale_slider("LoRA Scale 7", visible=False)
|
| 1077 |
+
with gr.Row():
|
| 1078 |
+
with gr.Group():
|
| 1079 |
+
lora7_info_gui = lora_textbox("LoRA7 prompts")
|
| 1080 |
+
lora7_copy_gui = gr.Button(value="Copy example to prompt", visible=False)
|
| 1081 |
+
lora7_desc_gui = gr.Markdown(value="", visible=False)
|
| 1082 |
with gr.Accordion("From URL", open=True, visible=True):
|
| 1083 |
with gr.Row():
|
| 1084 |
search_civitai_basemodel_lora = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"])
|
|
|
|
| 1095 |
search_civitai_result_lora = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
| 1096 |
with gr.Row():
|
| 1097 |
text_lora = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1, scale=4)
|
| 1098 |
+
romanize_text = gr.Checkbox(value=False, label="Transliterate name", scale=1, visible=False)
|
| 1099 |
button_lora = gr.Button("Get and Refresh the LoRA Lists")
|
| 1100 |
new_lora_status = gr.HTML()
|
| 1101 |
with gr.Accordion("From Local", open=True, visible=True):
|
|
|
|
| 1113 |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
|
| 1114 |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
|
| 1115 |
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
|
| 1116 |
+
hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS
|
| 1117 |
+
hires_schedule_type_gui = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0])
|
| 1118 |
+
hires_guidance_scale_gui = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used")
|
| 1119 |
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
|
| 1120 |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
|
| 1121 |
|
|
|
|
| 1182 |
minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
|
| 1183 |
info="The maximum proportional size of the generated image based on the uploaded image."
|
| 1184 |
)
|
| 1185 |
+
with gr.Row():
|
| 1186 |
+
controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0])
|
| 1187 |
+
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
|
| 1188 |
+
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
|
| 1189 |
+
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
|
| 1190 |
+
with gr.Row():
|
| 1191 |
+
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"])
|
| 1192 |
+
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
| 1193 |
+
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
| 1194 |
+
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
| 1195 |
|
| 1196 |
def change_preprocessor_choices(task):
|
| 1197 |
task = TASK_STABLEPY[task]
|
| 1198 |
+
if task in TASK_AND_PREPROCESSORS.keys():
|
| 1199 |
+
choices_task = TASK_AND_PREPROCESSORS[task]
|
| 1200 |
else:
|
| 1201 |
+
choices_task = TASK_AND_PREPROCESSORS["canny"]
|
| 1202 |
return gr.update(choices=choices_task, value=choices_task[0])
|
| 1203 |
|
| 1204 |
task_gui.change(
|
|
|
|
| 1206 |
[task_gui],
|
| 1207 |
[preprocessor_name_gui],
|
| 1208 |
)
|
| 1209 |
+
|
| 1210 |
with gr.Row():
|
| 1211 |
+
value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
|
| 1212 |
+
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
|
| 1213 |
+
recolor_gamma_correction_gui = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
| 1214 |
+
tile_blur_sigma_gui = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1215 |
|
| 1216 |
with gr.Accordion("IP-Adapter", open=False, visible=True) as menu_ipa:
|
| 1217 |
|
|
|
|
| 1270 |
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])
|
| 1271 |
|
| 1272 |
with gr.Accordion("Other settings", open=False, visible=True) as menu_other:
|
|
|
|
| 1273 |
with gr.Row():
|
| 1274 |
save_generated_images_gui = gr.Checkbox(value=False, label="Save Generated Images")
|
| 1275 |
filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1)
|
|
|
|
| 1354 |
# enable crop (or disable it)
|
| 1355 |
# transforms=["crop"],
|
| 1356 |
brush=gr.Brush(
|
| 1357 |
+
default_size="16", # or leave it as 'auto'
|
| 1358 |
+
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it
|
| 1359 |
+
# default_color="black", # html names are supported
|
| 1360 |
+
colors=[
|
| 1361 |
+
"rgba(0, 0, 0, 1)", # rgb(a)
|
| 1362 |
+
"rgba(0, 0, 0, 0.1)",
|
| 1363 |
+
"rgba(255, 255, 255, 0.1)",
|
| 1364 |
+
# "hsl(360, 120, 120)" # in fact any valid colorstring
|
| 1365 |
+
]
|
| 1366 |
),
|
| 1367 |
eraser=gr.Eraser(default_size="16")
|
| 1368 |
)
|
|
|
|
| 1410 |
outputs=[result_up_tab],
|
| 1411 |
)
|
| 1412 |
|
| 1413 |
+
with gr.Tab("Preprocessor", render=True):
|
| 1414 |
+
preprocessor_tab()
|
| 1415 |
+
|
| 1416 |
## BEGIN MOD
|
| 1417 |
interface_mode_gui.change(
|
| 1418 |
change_interface_mode,
|
|
|
|
| 1447 |
gr.on(
|
| 1448 |
triggers=[lora1_gui.change, lora_scale_1_gui.change, lora2_gui.change, lora_scale_2_gui.change,
|
| 1449 |
lora3_gui.change, lora_scale_3_gui.change, lora4_gui.change, lora_scale_4_gui.change,
|
| 1450 |
+
lora5_gui.change, lora_scale_5_gui.change, lora6_gui.change, lora_scale_6_gui.change,
|
| 1451 |
+
lora7_gui.change, lora_scale_7_gui.change, prompt_syntax_gui.change],
|
| 1452 |
fn=update_loras,
|
| 1453 |
inputs=[prompt_gui, prompt_syntax_gui, lora1_gui, lora_scale_1_gui, lora2_gui, lora_scale_2_gui,
|
| 1454 |
+
lora3_gui, lora_scale_3_gui, lora4_gui, lora_scale_4_gui, lora5_gui, lora_scale_5_gui,
|
| 1455 |
+
lora6_gui, lora_scale_6_gui, lora7_gui, lora_scale_7_gui],
|
| 1456 |
outputs=[prompt_gui, lora1_gui, lora_scale_1_gui, lora1_info_gui, lora1_copy_gui, lora1_desc_gui,
|
| 1457 |
lora2_gui, lora_scale_2_gui, lora2_info_gui, lora2_copy_gui, lora2_desc_gui,
|
| 1458 |
lora3_gui, lora_scale_3_gui, lora3_info_gui, lora3_copy_gui, lora3_desc_gui,
|
| 1459 |
lora4_gui, lora_scale_4_gui, lora4_info_gui, lora4_copy_gui, lora4_desc_gui,
|
| 1460 |
+
lora5_gui, lora_scale_5_gui, lora5_info_gui, lora5_copy_gui, lora5_desc_gui,
|
| 1461 |
+
lora6_gui, lora_scale_6_gui, lora6_info_gui, lora6_copy_gui, lora6_desc_gui,
|
| 1462 |
+
lora7_gui, lora_scale_7_gui, lora7_info_gui, lora7_copy_gui, lora7_desc_gui],
|
| 1463 |
queue=False,
|
| 1464 |
trigger_mode="once",
|
| 1465 |
)
|
|
|
|
| 1468 |
lora3_copy_gui.click(apply_lora_prompt, [prompt_gui, lora3_info_gui], [prompt_gui], queue=False)
|
| 1469 |
lora4_copy_gui.click(apply_lora_prompt, [prompt_gui, lora4_info_gui], [prompt_gui], queue=False)
|
| 1470 |
lora5_copy_gui.click(apply_lora_prompt, [prompt_gui, lora5_info_gui], [prompt_gui], queue=False)
|
| 1471 |
+
lora6_copy_gui.click(apply_lora_prompt, [prompt_gui, lora6_info_gui], [prompt_gui], queue=False)
|
| 1472 |
+
lora7_copy_gui.click(apply_lora_prompt, [prompt_gui, lora7_info_gui], [prompt_gui], queue=False)
|
| 1473 |
gr.on(
|
| 1474 |
triggers=[search_civitai_button_lora.click, search_civitai_query_lora.submit],
|
| 1475 |
fn=search_civitai_lora,
|
|
|
|
| 1481 |
)
|
| 1482 |
search_civitai_result_lora.change(select_civitai_lora, [search_civitai_result_lora], [text_lora, search_civitai_desc_lora], queue=False, scroll_to_output=True)
|
| 1483 |
search_civitai_gallery_lora.select(update_civitai_selection, None, [search_civitai_result_lora], queue=False, show_api=False)
|
| 1484 |
+
button_lora.click(get_my_lora, [text_lora, romanize_text], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui, new_lora_status], scroll_to_output=True)
|
| 1485 |
upload_button_lora.upload(upload_file_lora, [upload_button_lora], [file_output_lora, upload_button_lora]).success(
|
| 1486 |
+
move_file_lora, [file_output_lora], [lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, lora6_gui, lora7_gui], scroll_to_output=True)
|
| 1487 |
|
| 1488 |
use_textual_inversion_gui.change(set_textual_inversion_prompt, [use_textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui], [prompt_gui, neg_prompt_gui])
|
| 1489 |
|
|
|
|
| 1528 |
inputs=[
|
| 1529 |
model_name_gui,
|
| 1530 |
vae_model_gui,
|
| 1531 |
+
task_gui,
|
| 1532 |
+
controlnet_model_gui,
|
| 1533 |
],
|
| 1534 |
outputs=[load_model_gui],
|
| 1535 |
queue=True,
|
|
|
|
| 1554 |
lora_scale_4_gui,
|
| 1555 |
lora5_gui,
|
| 1556 |
lora_scale_5_gui,
|
| 1557 |
+
lora6_gui,
|
| 1558 |
+
lora_scale_6_gui,
|
| 1559 |
+
lora7_gui,
|
| 1560 |
+
lora_scale_7_gui,
|
| 1561 |
sampler_gui,
|
| 1562 |
schedule_type_gui,
|
| 1563 |
schedule_prediction_type_gui,
|
|
|
|
| 1578 |
high_threshold_gui,
|
| 1579 |
value_threshold_gui,
|
| 1580 |
distance_threshold_gui,
|
| 1581 |
+
recolor_gamma_correction_gui,
|
| 1582 |
+
tile_blur_sigma_gui,
|
| 1583 |
control_net_output_scaling_gui,
|
| 1584 |
control_net_start_threshold_gui,
|
| 1585 |
control_net_stop_threshold_gui,
|
|
|
|
| 1596 |
hires_negative_prompt_gui,
|
| 1597 |
hires_before_adetailer_gui,
|
| 1598 |
hires_after_adetailer_gui,
|
| 1599 |
+
hires_schedule_type_gui,
|
| 1600 |
+
hires_guidance_scale_gui,
|
| 1601 |
+
controlnet_model_gui,
|
| 1602 |
loop_generation_gui,
|
| 1603 |
leave_progress_bar_gui,
|
| 1604 |
disable_progress_bar_gui,
|
|
|
|
| 1640 |
mask_blur_b_gui,
|
| 1641 |
mask_padding_b_gui,
|
| 1642 |
retain_task_cache_gui,
|
| 1643 |
+
guidance_rescale_gui,
|
| 1644 |
image_ip1,
|
| 1645 |
mask_ip1,
|
| 1646 |
model_ip1,
|
constants.py
CHANGED
|
@@ -17,7 +17,7 @@ DOWNLOAD_LORA = "https://huggingface.co/Leopain/color/resolve/main/Coloring_book
|
|
| 17 |
|
| 18 |
LOAD_DIFFUSERS_FORMAT_MODEL = [
|
| 19 |
'stabilityai/stable-diffusion-xl-base-1.0',
|
| 20 |
-
'Laxhar/noobai-XL-1.
|
| 21 |
'black-forest-labs/FLUX.1-dev',
|
| 22 |
'John6666/blue-pencil-flux1-v021-fp8-flux',
|
| 23 |
'John6666/wai-ani-flux-v10forfp8-fp8-flux',
|
|
@@ -31,6 +31,7 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 31 |
'terminusresearch/FluxBooru-v0.3',
|
| 32 |
'ostris/OpenFLUX.1',
|
| 33 |
'shuttleai/shuttle-3-diffusion',
|
|
|
|
| 34 |
'John6666/noobai-xl-nai-xl-epsilonpred10version-sdxl',
|
| 35 |
'Laxhar/noobai-XL-0.77',
|
| 36 |
'John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl',
|
|
@@ -40,9 +41,13 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 40 |
'John6666/noobaiiter-xl-vpred-v075-sdxl',
|
| 41 |
'John6666/ntr-mix-illustrious-xl-noob-xl-v40-sdxl',
|
| 42 |
'John6666/ntr-mix-illustrious-xl-noob-xl-ntrmix35-sdxl',
|
|
|
|
|
|
|
| 43 |
'John6666/haruki-mix-illustrious-v10-sdxl',
|
| 44 |
'John6666/noobreal-v10-sdxl',
|
| 45 |
'John6666/complicated-noobai-merge-vprediction-sdxl',
|
|
|
|
|
|
|
| 46 |
'Laxhar/noobai-XL-Vpred-0.6',
|
| 47 |
'John6666/noobai-xl-nai-xl-vpred05version-sdxl',
|
| 48 |
'John6666/noobai-fusion2-vpred-itercomp-v1-sdxl',
|
|
@@ -56,6 +61,7 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 56 |
'John6666/wai-nsfw-illustrious-v70-sdxl',
|
| 57 |
'John6666/illustrious-pony-mix-v3-sdxl',
|
| 58 |
'John6666/nova-anime-xl-illustriousv10-sdxl',
|
|
|
|
| 59 |
'John6666/silvermoon-mix03-illustrious-v10-sdxl',
|
| 60 |
'eienmojiki/Anything-XL',
|
| 61 |
'eienmojiki/Starry-XL-v5.2',
|
|
@@ -82,9 +88,8 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 82 |
'John6666/prefect-pony-xl-v4-sdxl',
|
| 83 |
'John6666/mala-anime-mix-nsfw-pony-xl-v5-sdxl',
|
| 84 |
'John6666/wai-ani-nsfw-ponyxl-v10-sdxl',
|
| 85 |
-
'John6666/wai-ani-nsfw-ponyxl-v9-sdxl',
|
| 86 |
'John6666/wai-real-mix-v11-sdxl',
|
| 87 |
-
'John6666/
|
| 88 |
'John6666/wai-c-v6-sdxl',
|
| 89 |
'John6666/iniverse-mix-xl-sfwnsfw-pony-guofeng-v43-sdxl',
|
| 90 |
'John6666/sifw-annihilation-xl-v2-sdxl',
|
|
@@ -114,7 +119,7 @@ LOAD_DIFFUSERS_FORMAT_MODEL = [
|
|
| 114 |
'digiplay/DarkSushi2.5D_v1',
|
| 115 |
'digiplay/darkphoenix3D_v1.1',
|
| 116 |
'digiplay/BeenYouLiteL11_diffusers',
|
| 117 |
-
'
|
| 118 |
'youknownothing/cyberrealistic_v50',
|
| 119 |
'youknownothing/deliberate-v6',
|
| 120 |
'GraydientPlatformAPI/deliberate-cyber3',
|
|
@@ -142,7 +147,7 @@ DOWNLOAD_EMBEDS = [
|
|
| 142 |
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt',
|
| 143 |
# 'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors',
|
| 144 |
# 'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt',
|
| 145 |
-
|
| 146 |
|
| 147 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
| 148 |
HF_TOKEN = os.environ.get("HF_READ_TOKEN")
|
|
@@ -155,79 +160,6 @@ DIRECTORY_EMBEDS = 'embedings'
|
|
| 155 |
CACHE_HF = "/home/user/.cache/huggingface/hub/"
|
| 156 |
STORAGE_ROOT = "/home/user/"
|
| 157 |
|
| 158 |
-
PREPROCESSOR_CONTROLNET = {
|
| 159 |
-
"openpose": [
|
| 160 |
-
"Openpose",
|
| 161 |
-
"None",
|
| 162 |
-
],
|
| 163 |
-
"scribble": [
|
| 164 |
-
"HED",
|
| 165 |
-
"PidiNet",
|
| 166 |
-
"None",
|
| 167 |
-
],
|
| 168 |
-
"softedge": [
|
| 169 |
-
"PidiNet",
|
| 170 |
-
"HED",
|
| 171 |
-
"HED safe",
|
| 172 |
-
"PidiNet safe",
|
| 173 |
-
"None",
|
| 174 |
-
],
|
| 175 |
-
"segmentation": [
|
| 176 |
-
"UPerNet",
|
| 177 |
-
"None",
|
| 178 |
-
],
|
| 179 |
-
"depth": [
|
| 180 |
-
"DPT",
|
| 181 |
-
"Midas",
|
| 182 |
-
"None",
|
| 183 |
-
],
|
| 184 |
-
"normalbae": [
|
| 185 |
-
"NormalBae",
|
| 186 |
-
"None",
|
| 187 |
-
],
|
| 188 |
-
"lineart": [
|
| 189 |
-
"Lineart",
|
| 190 |
-
"Lineart coarse",
|
| 191 |
-
"Lineart (anime)",
|
| 192 |
-
"None",
|
| 193 |
-
"None (anime)",
|
| 194 |
-
],
|
| 195 |
-
"lineart_anime": [
|
| 196 |
-
"Lineart",
|
| 197 |
-
"Lineart coarse",
|
| 198 |
-
"Lineart (anime)",
|
| 199 |
-
"None",
|
| 200 |
-
"None (anime)",
|
| 201 |
-
],
|
| 202 |
-
"shuffle": [
|
| 203 |
-
"ContentShuffle",
|
| 204 |
-
"None",
|
| 205 |
-
],
|
| 206 |
-
"canny": [
|
| 207 |
-
"Canny",
|
| 208 |
-
"None",
|
| 209 |
-
],
|
| 210 |
-
"mlsd": [
|
| 211 |
-
"MLSD",
|
| 212 |
-
"None",
|
| 213 |
-
],
|
| 214 |
-
"ip2p": [
|
| 215 |
-
"ip2p"
|
| 216 |
-
],
|
| 217 |
-
"recolor": [
|
| 218 |
-
"Recolor luminance",
|
| 219 |
-
"Recolor intensity",
|
| 220 |
-
"None",
|
| 221 |
-
],
|
| 222 |
-
"tile": [
|
| 223 |
-
"Mild Blur",
|
| 224 |
-
"Moderate Blur",
|
| 225 |
-
"Heavy Blur",
|
| 226 |
-
"None",
|
| 227 |
-
],
|
| 228 |
-
|
| 229 |
-
}
|
| 230 |
-
|
| 231 |
TASK_STABLEPY = {
|
| 232 |
'txt2img': 'txt2img',
|
| 233 |
'img2img': 'img2img',
|
|
@@ -284,11 +216,74 @@ UPSCALER_DICT_GUI = {
|
|
| 284 |
|
| 285 |
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
PROMPT_W_OPTIONS = [
|
| 288 |
("Compel format: (word)weight", "Compel"),
|
| 289 |
("Classic format: (word:weight)", "Classic"),
|
| 290 |
("Classic-original format: (word:weight)", "Classic-original"),
|
| 291 |
("Classic-no_norm format: (word:weight)", "Classic-no_norm"),
|
|
|
|
| 292 |
("Classic-ignore", "Classic-ignore"),
|
| 293 |
("None", "None"),
|
| 294 |
]
|
|
@@ -371,7 +366,7 @@ EXAMPLES_GUI = [
|
|
| 371 |
1.0, # cn scale
|
| 372 |
0.0, # cn start
|
| 373 |
1.0, # cn end
|
| 374 |
-
"Classic",
|
| 375 |
"Nearest",
|
| 376 |
45,
|
| 377 |
False,
|
|
@@ -384,7 +379,7 @@ EXAMPLES_GUI = [
|
|
| 384 |
-1,
|
| 385 |
"None",
|
| 386 |
0.33,
|
| 387 |
-
"
|
| 388 |
1152,
|
| 389 |
896,
|
| 390 |
"black-forest-labs/FLUX.1-dev",
|
|
@@ -408,7 +403,7 @@ EXAMPLES_GUI = [
|
|
| 408 |
-1,
|
| 409 |
"None",
|
| 410 |
0.33,
|
| 411 |
-
"DPM++ 2M SDE
|
| 412 |
1024,
|
| 413 |
1024,
|
| 414 |
"John6666/epicrealism-xl-v10kiss2-sdxl",
|
|
@@ -491,7 +486,7 @@ EXAMPLES_GUI = [
|
|
| 491 |
1.0, # cn scale
|
| 492 |
0.0, # cn start
|
| 493 |
0.9, # cn end
|
| 494 |
-
"
|
| 495 |
"Latent (antialiased)",
|
| 496 |
46,
|
| 497 |
False,
|
|
|
|
| 17 |
|
| 18 |
LOAD_DIFFUSERS_FORMAT_MODEL = [
|
| 19 |
'stabilityai/stable-diffusion-xl-base-1.0',
|
| 20 |
+
'Laxhar/noobai-XL-1.1',
|
| 21 |
'black-forest-labs/FLUX.1-dev',
|
| 22 |
'John6666/blue-pencil-flux1-v021-fp8-flux',
|
| 23 |
'John6666/wai-ani-flux-v10forfp8-fp8-flux',
|
|
|
|
| 31 |
'terminusresearch/FluxBooru-v0.3',
|
| 32 |
'ostris/OpenFLUX.1',
|
| 33 |
'shuttleai/shuttle-3-diffusion',
|
| 34 |
+
'Laxhar/noobai-XL-1.0',
|
| 35 |
'John6666/noobai-xl-nai-xl-epsilonpred10version-sdxl',
|
| 36 |
'Laxhar/noobai-XL-0.77',
|
| 37 |
'John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl',
|
|
|
|
| 41 |
'John6666/noobaiiter-xl-vpred-v075-sdxl',
|
| 42 |
'John6666/ntr-mix-illustrious-xl-noob-xl-v40-sdxl',
|
| 43 |
'John6666/ntr-mix-illustrious-xl-noob-xl-ntrmix35-sdxl',
|
| 44 |
+
'John6666/ntr-mix-illustrious-xl-noob-xl-v777-sdxl',
|
| 45 |
+
'John6666/ntr-mix-illustrious-xl-noob-xl-v777forlora-sdxl',
|
| 46 |
'John6666/haruki-mix-illustrious-v10-sdxl',
|
| 47 |
'John6666/noobreal-v10-sdxl',
|
| 48 |
'John6666/complicated-noobai-merge-vprediction-sdxl',
|
| 49 |
+
'Laxhar/noobai-XL-Vpred-0.65s',
|
| 50 |
+
'Laxhar/noobai-XL-Vpred-0.65',
|
| 51 |
'Laxhar/noobai-XL-Vpred-0.6',
|
| 52 |
'John6666/noobai-xl-nai-xl-vpred05version-sdxl',
|
| 53 |
'John6666/noobai-fusion2-vpred-itercomp-v1-sdxl',
|
|
|
|
| 61 |
'John6666/wai-nsfw-illustrious-v70-sdxl',
|
| 62 |
'John6666/illustrious-pony-mix-v3-sdxl',
|
| 63 |
'John6666/nova-anime-xl-illustriousv10-sdxl',
|
| 64 |
+
'John6666/nova-orange-xl-v30-sdxl',
|
| 65 |
'John6666/silvermoon-mix03-illustrious-v10-sdxl',
|
| 66 |
'eienmojiki/Anything-XL',
|
| 67 |
'eienmojiki/Starry-XL-v5.2',
|
|
|
|
| 88 |
'John6666/prefect-pony-xl-v4-sdxl',
|
| 89 |
'John6666/mala-anime-mix-nsfw-pony-xl-v5-sdxl',
|
| 90 |
'John6666/wai-ani-nsfw-ponyxl-v10-sdxl',
|
|
|
|
| 91 |
'John6666/wai-real-mix-v11-sdxl',
|
| 92 |
+
'John6666/wai-shuffle-pdxl-v2-sdxl',
|
| 93 |
'John6666/wai-c-v6-sdxl',
|
| 94 |
'John6666/iniverse-mix-xl-sfwnsfw-pony-guofeng-v43-sdxl',
|
| 95 |
'John6666/sifw-annihilation-xl-v2-sdxl',
|
|
|
|
| 119 |
'digiplay/DarkSushi2.5D_v1',
|
| 120 |
'digiplay/darkphoenix3D_v1.1',
|
| 121 |
'digiplay/BeenYouLiteL11_diffusers',
|
| 122 |
+
'GraydientPlatformAPI/rev-animated2',
|
| 123 |
'youknownothing/cyberrealistic_v50',
|
| 124 |
'youknownothing/deliberate-v6',
|
| 125 |
'GraydientPlatformAPI/deliberate-cyber3',
|
|
|
|
| 147 |
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt',
|
| 148 |
# 'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors',
|
| 149 |
# 'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt',
|
| 150 |
+
]
|
| 151 |
|
| 152 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
| 153 |
HF_TOKEN = os.environ.get("HF_READ_TOKEN")
|
|
|
|
| 160 |
CACHE_HF = "/home/user/.cache/huggingface/hub/"
|
| 161 |
STORAGE_ROOT = "/home/user/"
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
TASK_STABLEPY = {
|
| 164 |
'txt2img': 'txt2img',
|
| 165 |
'img2img': 'img2img',
|
|
|
|
| 216 |
|
| 217 |
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
| 218 |
|
| 219 |
+
DIFFUSERS_CONTROLNET_MODEL = [
|
| 220 |
+
"Automatic",
|
| 221 |
+
|
| 222 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
| 223 |
+
"xinsir/anime-painter",
|
| 224 |
+
"Eugeoter/noob-sdxl-controlnet-canny",
|
| 225 |
+
"Eugeoter/noob-sdxl-controlnet-lineart_anime",
|
| 226 |
+
"Eugeoter/noob-sdxl-controlnet-depth",
|
| 227 |
+
"Eugeoter/noob-sdxl-controlnet-normal",
|
| 228 |
+
"Eugeoter/noob-sdxl-controlnet-softedge_hed",
|
| 229 |
+
"Eugeoter/noob-sdxl-controlnet-scribble_pidinet",
|
| 230 |
+
"Eugeoter/noob-sdxl-controlnet-scribble_hed",
|
| 231 |
+
"Eugeoter/noob-sdxl-controlnet-manga_line",
|
| 232 |
+
"Eugeoter/noob-sdxl-controlnet-lineart_realistic",
|
| 233 |
+
"Eugeoter/noob-sdxl-controlnet-depth_midas-v1-1",
|
| 234 |
+
"dimitribarbot/controlnet-openpose-sdxl-1.0-safetensors",
|
| 235 |
+
"r3gm/controlnet-openpose-sdxl-1.0-fp16",
|
| 236 |
+
"r3gm/controlnet-canny-scribble-integrated-sdxl-v2-fp16",
|
| 237 |
+
"r3gm/controlnet-union-sdxl-1.0-fp16",
|
| 238 |
+
"r3gm/controlnet-lineart-anime-sdxl-fp16",
|
| 239 |
+
"r3gm/control_v1p_sdxl_qrcode_monster_fp16",
|
| 240 |
+
"r3gm/controlnet-tile-sdxl-1.0-fp16",
|
| 241 |
+
"r3gm/controlnet-recolor-sdxl-fp16",
|
| 242 |
+
"r3gm/controlnet-openpose-twins-sdxl-1.0-fp16",
|
| 243 |
+
"r3gm/controlnet-qr-pattern-sdxl-fp16",
|
| 244 |
+
"brad-twinkl/controlnet-union-sdxl-1.0-promax",
|
| 245 |
+
"Yakonrus/SDXL_Controlnet_Tile_Realistic_v2",
|
| 246 |
+
"TheMistoAI/MistoLine",
|
| 247 |
+
"briaai/BRIA-2.3-ControlNet-Recoloring",
|
| 248 |
+
"briaai/BRIA-2.3-ControlNet-Canny",
|
| 249 |
+
|
| 250 |
+
"lllyasviel/control_v11p_sd15_openpose",
|
| 251 |
+
"lllyasviel/control_v11p_sd15_canny",
|
| 252 |
+
"lllyasviel/control_v11p_sd15_mlsd",
|
| 253 |
+
"lllyasviel/control_v11p_sd15_scribble",
|
| 254 |
+
"lllyasviel/control_v11p_sd15_softedge",
|
| 255 |
+
"lllyasviel/control_v11p_sd15_seg",
|
| 256 |
+
"lllyasviel/control_v11f1p_sd15_depth",
|
| 257 |
+
"lllyasviel/control_v11p_sd15_normalbae",
|
| 258 |
+
"lllyasviel/control_v11p_sd15_lineart",
|
| 259 |
+
"lllyasviel/control_v11p_sd15s2_lineart_anime",
|
| 260 |
+
"lllyasviel/control_v11e_sd15_shuffle",
|
| 261 |
+
"lllyasviel/control_v11e_sd15_ip2p",
|
| 262 |
+
"lllyasviel/control_v11p_sd15_inpaint",
|
| 263 |
+
"monster-labs/control_v1p_sd15_qrcode_monster",
|
| 264 |
+
"lllyasviel/control_v11f1e_sd15_tile",
|
| 265 |
+
"latentcat/control_v1p_sd15_brightness",
|
| 266 |
+
"yuanqiuye/qrcode_controlnet_v3",
|
| 267 |
+
|
| 268 |
+
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
| 269 |
+
# "Shakker-Labs/FLUX.1-dev-ControlNet-Pose",
|
| 270 |
+
# "Shakker-Labs/FLUX.1-dev-ControlNet-Depth",
|
| 271 |
+
# "jasperai/Flux.1-dev-Controlnet-Upscaler",
|
| 272 |
+
# "jasperai/Flux.1-dev-Controlnet-Depth",
|
| 273 |
+
# "jasperai/Flux.1-dev-Controlnet-Surface-Normals",
|
| 274 |
+
# "XLabs-AI/flux-controlnet-canny-diffusers",
|
| 275 |
+
# "XLabs-AI/flux-controlnet-hed-diffusers",
|
| 276 |
+
# "XLabs-AI/flux-controlnet-depth-diffusers",
|
| 277 |
+
# "InstantX/FLUX.1-dev-Controlnet-Union",
|
| 278 |
+
# "InstantX/FLUX.1-dev-Controlnet-Canny",
|
| 279 |
+
]
|
| 280 |
+
|
| 281 |
PROMPT_W_OPTIONS = [
|
| 282 |
("Compel format: (word)weight", "Compel"),
|
| 283 |
("Classic format: (word:weight)", "Classic"),
|
| 284 |
("Classic-original format: (word:weight)", "Classic-original"),
|
| 285 |
("Classic-no_norm format: (word:weight)", "Classic-no_norm"),
|
| 286 |
+
("Classic-sd_embed format: (word:weight)", "Classic-sd_embed"),
|
| 287 |
("Classic-ignore", "Classic-ignore"),
|
| 288 |
("None", "None"),
|
| 289 |
]
|
|
|
|
| 366 |
1.0, # cn scale
|
| 367 |
0.0, # cn start
|
| 368 |
1.0, # cn end
|
| 369 |
+
"Classic-no_norm",
|
| 370 |
"Nearest",
|
| 371 |
45,
|
| 372 |
False,
|
|
|
|
| 379 |
-1,
|
| 380 |
"None",
|
| 381 |
0.33,
|
| 382 |
+
"FlowMatch Euler",
|
| 383 |
1152,
|
| 384 |
896,
|
| 385 |
"black-forest-labs/FLUX.1-dev",
|
|
|
|
| 403 |
-1,
|
| 404 |
"None",
|
| 405 |
0.33,
|
| 406 |
+
"DPM++ 2M SDE Ef",
|
| 407 |
1024,
|
| 408 |
1024,
|
| 409 |
"John6666/epicrealism-xl-v10kiss2-sdxl",
|
|
|
|
| 486 |
1.0, # cn scale
|
| 487 |
0.0, # cn start
|
| 488 |
0.9, # cn end
|
| 489 |
+
"Classic-original",
|
| 490 |
"Latent (antialiased)",
|
| 491 |
46,
|
| 492 |
False,
|
image_processor.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from stablepy import Preprocessor
|
| 4 |
+
|
| 5 |
+
PREPROCESSOR_TASKS_LIST = [
|
| 6 |
+
"Canny",
|
| 7 |
+
"Openpose",
|
| 8 |
+
"DPT",
|
| 9 |
+
"Midas",
|
| 10 |
+
"ZoeDepth",
|
| 11 |
+
"DepthAnything",
|
| 12 |
+
"HED",
|
| 13 |
+
"PidiNet",
|
| 14 |
+
"TEED",
|
| 15 |
+
"Lineart",
|
| 16 |
+
"LineartAnime",
|
| 17 |
+
"Anyline",
|
| 18 |
+
"Lineart standard",
|
| 19 |
+
"SegFormer",
|
| 20 |
+
"UPerNet",
|
| 21 |
+
"ContentShuffle",
|
| 22 |
+
"Recolor",
|
| 23 |
+
"Blur",
|
| 24 |
+
"MLSD",
|
| 25 |
+
"NormalBae",
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
preprocessor = Preprocessor()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def process_inputs(
|
| 32 |
+
image,
|
| 33 |
+
name,
|
| 34 |
+
resolution,
|
| 35 |
+
precessor_resolution,
|
| 36 |
+
low_threshold,
|
| 37 |
+
high_threshold,
|
| 38 |
+
value_threshod,
|
| 39 |
+
distance_threshold,
|
| 40 |
+
recolor_mode,
|
| 41 |
+
recolor_gamma_correction,
|
| 42 |
+
blur_k_size,
|
| 43 |
+
pre_openpose_extra,
|
| 44 |
+
hed_scribble,
|
| 45 |
+
pre_pidinet_safe,
|
| 46 |
+
pre_lineart_coarse,
|
| 47 |
+
use_cuda,
|
| 48 |
+
):
|
| 49 |
+
if not image:
|
| 50 |
+
raise ValueError("To use this, simply upload an image.")
|
| 51 |
+
|
| 52 |
+
preprocessor.load(name, False)
|
| 53 |
+
|
| 54 |
+
params = dict(
|
| 55 |
+
image_resolution=resolution,
|
| 56 |
+
detect_resolution=precessor_resolution,
|
| 57 |
+
low_threshold=low_threshold,
|
| 58 |
+
high_threshold=high_threshold,
|
| 59 |
+
thr_v=value_threshod,
|
| 60 |
+
thr_d=distance_threshold,
|
| 61 |
+
mode=recolor_mode,
|
| 62 |
+
gamma_correction=recolor_gamma_correction,
|
| 63 |
+
blur_sigma=blur_k_size,
|
| 64 |
+
hand_and_face=pre_openpose_extra,
|
| 65 |
+
scribble=hed_scribble,
|
| 66 |
+
safe=pre_pidinet_safe,
|
| 67 |
+
coarse=pre_lineart_coarse,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
if use_cuda:
|
| 71 |
+
@spaces.GPU(duration=15)
|
| 72 |
+
def wrapped_func():
|
| 73 |
+
preprocessor.to("cuda")
|
| 74 |
+
return preprocessor(image, **params)
|
| 75 |
+
return wrapped_func()
|
| 76 |
+
|
| 77 |
+
return preprocessor(image, **params)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def preprocessor_tab():
|
| 81 |
+
with gr.Row():
|
| 82 |
+
with gr.Column():
|
| 83 |
+
pre_image = gr.Image(label="Image", type="pil", sources=["upload"])
|
| 84 |
+
pre_options = gr.Dropdown(label="Preprocessor", choices=PREPROCESSOR_TASKS_LIST, value=PREPROCESSOR_TASKS_LIST[0])
|
| 85 |
+
pre_img_resolution = gr.Slider(
|
| 86 |
+
minimum=64, maximum=4096, step=64, value=1024, label="Image Resolution",
|
| 87 |
+
info="The maximum proportional size of the generated image based on the uploaded image."
|
| 88 |
+
)
|
| 89 |
+
pre_start = gr.Button(value="PROCESS IMAGE", variant="primary")
|
| 90 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 91 |
+
with gr.Column():
|
| 92 |
+
pre_processor_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
| 93 |
+
pre_low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
| 94 |
+
pre_high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
| 95 |
+
pre_value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
|
| 96 |
+
pre_distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
|
| 97 |
+
pre_recolor_mode = gr.Dropdown(label="'RECOLOR' mode", choices=["luminance", "intensity"], value="luminance")
|
| 98 |
+
pre_recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
| 99 |
+
pre_blur_k_size = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'BLUR' sigma")
|
| 100 |
+
pre_openpose_extra = gr.Checkbox(value=True, label="'OPENPOSE' face and hand")
|
| 101 |
+
pre_hed_scribble = gr.Checkbox(value=False, label="'HED' scribble")
|
| 102 |
+
pre_pidinet_safe = gr.Checkbox(value=False, label="'PIDINET' safe")
|
| 103 |
+
pre_lineart_coarse = gr.Checkbox(value=False, label="'LINEART' coarse")
|
| 104 |
+
pre_use_cuda = gr.Checkbox(value=False, label="Use CUDA")
|
| 105 |
+
|
| 106 |
+
with gr.Column():
|
| 107 |
+
pre_result = gr.Image(label="Result", type="pil", interactive=False, format="png")
|
| 108 |
+
|
| 109 |
+
pre_start.click(
|
| 110 |
+
fn=process_inputs,
|
| 111 |
+
inputs=[
|
| 112 |
+
pre_image,
|
| 113 |
+
pre_options,
|
| 114 |
+
pre_img_resolution,
|
| 115 |
+
pre_processor_resolution,
|
| 116 |
+
pre_low_threshold,
|
| 117 |
+
pre_high_threshold,
|
| 118 |
+
pre_value_threshold,
|
| 119 |
+
pre_distance_threshold,
|
| 120 |
+
pre_recolor_mode,
|
| 121 |
+
pre_recolor_gamma_correction,
|
| 122 |
+
pre_blur_k_size,
|
| 123 |
+
pre_openpose_extra,
|
| 124 |
+
pre_hed_scribble,
|
| 125 |
+
pre_pidinet_safe,
|
| 126 |
+
pre_lineart_coarse,
|
| 127 |
+
pre_use_cuda,
|
| 128 |
+
],
|
| 129 |
+
outputs=[pre_result],
|
| 130 |
+
)
|
modutils.py
CHANGED
|
@@ -302,6 +302,10 @@ def safe_float(input):
|
|
| 302 |
return output
|
| 303 |
|
| 304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
def save_images(images: list[Image.Image], metadatas: list[str]):
|
| 306 |
from PIL import PngImagePlugin
|
| 307 |
import uuid
|
|
@@ -566,7 +570,8 @@ private_lora_model_list = get_private_lora_model_lists()
|
|
| 566 |
|
| 567 |
def get_civitai_info(path):
|
| 568 |
global civitai_not_exists_list
|
| 569 |
-
|
|
|
|
| 570 |
if not Path(path).exists(): return None
|
| 571 |
user_agent = get_user_agent()
|
| 572 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
|
@@ -584,12 +589,12 @@ def get_civitai_info(path):
|
|
| 584 |
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
| 585 |
except Exception as e:
|
| 586 |
print(e)
|
| 587 |
-
return
|
| 588 |
if not r.ok: return None
|
| 589 |
json = r.json()
|
| 590 |
if not 'baseModel' in json:
|
| 591 |
civitai_not_exists_list.append(path)
|
| 592 |
-
return
|
| 593 |
items = []
|
| 594 |
items.append(" / ".join(json['trainedWords']))
|
| 595 |
items.append(json['baseModel'])
|
|
@@ -690,7 +695,7 @@ def copy_lora(path: str, new_path: str):
|
|
| 690 |
return None
|
| 691 |
|
| 692 |
|
| 693 |
-
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
|
| 694 |
path = download_lora(dl_urls)
|
| 695 |
if path:
|
| 696 |
if not lora1 or lora1 == "None":
|
|
@@ -703,9 +708,13 @@ def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: st
|
|
| 703 |
lora4 = path
|
| 704 |
elif not lora5 or lora5 == "None":
|
| 705 |
lora5 = path
|
|
|
|
|
|
|
|
|
|
|
|
|
| 706 |
choices = get_all_lora_tupled_list()
|
| 707 |
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
|
| 708 |
-
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)
|
| 709 |
|
| 710 |
|
| 711 |
def get_valid_lora_name(query: str, model_name: str):
|
|
@@ -745,25 +754,31 @@ def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
|
| 745 |
return wt
|
| 746 |
|
| 747 |
|
| 748 |
-
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 749 |
-
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
| 750 |
lora1 = get_valid_lora_name(lora1, model_name)
|
| 751 |
lora2 = get_valid_lora_name(lora2, model_name)
|
| 752 |
lora3 = get_valid_lora_name(lora3, model_name)
|
| 753 |
lora4 = get_valid_lora_name(lora4, model_name)
|
| 754 |
lora5 = get_valid_lora_name(lora5, model_name)
|
| 755 |
-
|
|
|
|
|
|
|
| 756 |
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
|
| 757 |
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
|
| 758 |
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
|
| 759 |
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
|
| 760 |
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
|
|
|
|
|
|
|
| 761 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 762 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 763 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
| 764 |
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 765 |
on5, label5, tag5, md5 = get_lora_info(lora5)
|
| 766 |
-
|
|
|
|
|
|
|
| 767 |
prompts = prompt.split(",") if prompt else []
|
| 768 |
for p in prompts:
|
| 769 |
p = str(p).strip()
|
|
@@ -780,30 +795,40 @@ def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2,
|
|
| 780 |
continue
|
| 781 |
elif not on1:
|
| 782 |
lora1 = path
|
| 783 |
-
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 784 |
lora1_wt = safe_float(wt)
|
| 785 |
on1 = True
|
| 786 |
elif not on2:
|
| 787 |
lora2 = path
|
| 788 |
-
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 789 |
lora2_wt = safe_float(wt)
|
| 790 |
on2 = True
|
| 791 |
elif not on3:
|
| 792 |
lora3 = path
|
| 793 |
-
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 794 |
lora3_wt = safe_float(wt)
|
| 795 |
on3 = True
|
| 796 |
elif not on4:
|
| 797 |
lora4 = path
|
| 798 |
-
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 799 |
lora4_wt = safe_float(wt)
|
| 800 |
on4 = True
|
| 801 |
elif not on5:
|
| 802 |
lora5 = path
|
| 803 |
-
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
| 804 |
lora5_wt = safe_float(wt)
|
| 805 |
on5 = True
|
| 806 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 807 |
|
| 808 |
|
| 809 |
def get_lora_info(lora_path: str):
|
|
@@ -864,13 +889,15 @@ def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
|
|
| 864 |
return gr.update(value=prompt)
|
| 865 |
|
| 866 |
|
| 867 |
-
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
| 868 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 869 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 870 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
| 871 |
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 872 |
on5, label5, tag5, md5 = get_lora_info(lora5)
|
| 873 |
-
|
|
|
|
|
|
|
| 874 |
|
| 875 |
output_prompt = prompt
|
| 876 |
if "Classic" in str(prompt_syntax):
|
|
@@ -895,6 +922,8 @@ def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3,
|
|
| 895 |
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
|
| 896 |
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
|
| 897 |
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
|
|
|
|
|
|
|
| 898 |
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
|
| 899 |
choices = get_all_lora_tupled_list()
|
| 900 |
|
|
@@ -907,7 +936,11 @@ def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3,
|
|
| 907 |
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
|
| 908 |
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
|
| 909 |
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
|
| 910 |
-
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 911 |
|
| 912 |
|
| 913 |
def get_my_lora(link_url, romanize):
|
|
@@ -926,7 +959,6 @@ def get_my_lora(link_url, romanize):
|
|
| 926 |
path.resolve().rename(new_path.resolve())
|
| 927 |
update_lora_dict(str(new_path))
|
| 928 |
l_path = str(new_path)
|
| 929 |
-
new_lora_model_list = get_lora_model_list()
|
| 930 |
new_lora_tupled_list = get_all_lora_tupled_list()
|
| 931 |
msg_lora = "Downloaded"
|
| 932 |
if l_name:
|
|
@@ -943,6 +975,10 @@ def get_my_lora(link_url, romanize):
|
|
| 943 |
choices=new_lora_tupled_list
|
| 944 |
), gr.update(
|
| 945 |
choices=new_lora_tupled_list
|
|
|
|
|
|
|
|
|
|
|
|
|
| 946 |
), gr.update(
|
| 947 |
value=msg_lora
|
| 948 |
)
|
|
@@ -975,12 +1011,19 @@ def move_file_lora(filepaths):
|
|
| 975 |
choices=new_lora_tupled_list
|
| 976 |
), gr.update(
|
| 977 |
choices=new_lora_tupled_list
|
|
|
|
|
|
|
|
|
|
|
|
|
| 978 |
)
|
| 979 |
|
| 980 |
|
| 981 |
-
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
|
| 982 |
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
|
| 983 |
-
CIVITAI_BASEMODEL = ["Pony", "Illustrious", "SDXL 1.0", "SD 1.5", "Flux.1 D", "Flux.1 S"]
|
|
|
|
|
|
|
|
|
|
| 984 |
|
| 985 |
|
| 986 |
def get_civitai_info(path):
|
|
@@ -1025,6 +1068,7 @@ def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1
|
|
| 1025 |
sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1):
|
| 1026 |
user_agent = get_user_agent()
|
| 1027 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
|
|
|
| 1028 |
base_url = 'https://civitai.com/api/v1/models'
|
| 1029 |
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'}
|
| 1030 |
if query: params["query"] = query
|
|
|
|
| 302 |
return output
|
| 303 |
|
| 304 |
|
| 305 |
+
def valid_model_name(model_name: str):
|
| 306 |
+
return model_name.split(" ")[0]
|
| 307 |
+
|
| 308 |
+
|
| 309 |
def save_images(images: list[Image.Image], metadatas: list[str]):
|
| 310 |
from PIL import PngImagePlugin
|
| 311 |
import uuid
|
|
|
|
| 570 |
|
| 571 |
def get_civitai_info(path):
|
| 572 |
global civitai_not_exists_list
|
| 573 |
+
default = ["", "", "", "", ""]
|
| 574 |
+
if path in set(civitai_not_exists_list): return default
|
| 575 |
if not Path(path).exists(): return None
|
| 576 |
user_agent = get_user_agent()
|
| 577 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
|
|
|
| 589 |
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
| 590 |
except Exception as e:
|
| 591 |
print(e)
|
| 592 |
+
return default
|
| 593 |
if not r.ok: return None
|
| 594 |
json = r.json()
|
| 595 |
if not 'baseModel' in json:
|
| 596 |
civitai_not_exists_list.append(path)
|
| 597 |
+
return default
|
| 598 |
items = []
|
| 599 |
items.append(" / ".join(json['trainedWords']))
|
| 600 |
items.append(json['baseModel'])
|
|
|
|
| 695 |
return None
|
| 696 |
|
| 697 |
|
| 698 |
+
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str, lora6: str, lora7: str):
|
| 699 |
path = download_lora(dl_urls)
|
| 700 |
if path:
|
| 701 |
if not lora1 or lora1 == "None":
|
|
|
|
| 708 |
lora4 = path
|
| 709 |
elif not lora5 or lora5 == "None":
|
| 710 |
lora5 = path
|
| 711 |
+
#elif not lora6 or lora6 == "None":
|
| 712 |
+
# lora6 = path
|
| 713 |
+
#elif not lora7 or lora7 == "None":
|
| 714 |
+
# lora7 = path
|
| 715 |
choices = get_all_lora_tupled_list()
|
| 716 |
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
|
| 717 |
+
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices), gr.update(value=lora6, choices=choices), gr.update(value=lora7, choices=choices)
|
| 718 |
|
| 719 |
|
| 720 |
def get_valid_lora_name(query: str, model_name: str):
|
|
|
|
| 754 |
return wt
|
| 755 |
|
| 756 |
|
| 757 |
+
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt):
|
| 758 |
+
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt
|
| 759 |
lora1 = get_valid_lora_name(lora1, model_name)
|
| 760 |
lora2 = get_valid_lora_name(lora2, model_name)
|
| 761 |
lora3 = get_valid_lora_name(lora3, model_name)
|
| 762 |
lora4 = get_valid_lora_name(lora4, model_name)
|
| 763 |
lora5 = get_valid_lora_name(lora5, model_name)
|
| 764 |
+
#lora6 = get_valid_lora_name(lora6, model_name)
|
| 765 |
+
#lora7 = get_valid_lora_name(lora7, model_name)
|
| 766 |
+
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt
|
| 767 |
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
|
| 768 |
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
|
| 769 |
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
|
| 770 |
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
|
| 771 |
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
|
| 772 |
+
#lora6_wt = get_valid_lora_wt(prompt, lora6, lora5_wt)
|
| 773 |
+
#lora7_wt = get_valid_lora_wt(prompt, lora7, lora5_wt)
|
| 774 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 775 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 776 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
| 777 |
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 778 |
on5, label5, tag5, md5 = get_lora_info(lora5)
|
| 779 |
+
#on6, label6, tag6, md6 = get_lora_info(lora6)
|
| 780 |
+
#on7, label7, tag7, md7 = get_lora_info(lora7)
|
| 781 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 782 |
prompts = prompt.split(",") if prompt else []
|
| 783 |
for p in prompts:
|
| 784 |
p = str(p).strip()
|
|
|
|
| 795 |
continue
|
| 796 |
elif not on1:
|
| 797 |
lora1 = path
|
| 798 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 799 |
lora1_wt = safe_float(wt)
|
| 800 |
on1 = True
|
| 801 |
elif not on2:
|
| 802 |
lora2 = path
|
| 803 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 804 |
lora2_wt = safe_float(wt)
|
| 805 |
on2 = True
|
| 806 |
elif not on3:
|
| 807 |
lora3 = path
|
| 808 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 809 |
lora3_wt = safe_float(wt)
|
| 810 |
on3 = True
|
| 811 |
elif not on4:
|
| 812 |
lora4 = path
|
| 813 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 814 |
lora4_wt = safe_float(wt)
|
| 815 |
on4 = True
|
| 816 |
elif not on5:
|
| 817 |
lora5 = path
|
| 818 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 819 |
lora5_wt = safe_float(wt)
|
| 820 |
on5 = True
|
| 821 |
+
#elif not on6:
|
| 822 |
+
# lora6 = path
|
| 823 |
+
# lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 824 |
+
# lora6_wt = safe_float(wt)
|
| 825 |
+
# on6 = True
|
| 826 |
+
#elif not on7:
|
| 827 |
+
# lora7 = path
|
| 828 |
+
# lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 829 |
+
# lora7_wt = safe_float(wt)
|
| 830 |
+
# on7 = True
|
| 831 |
+
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt
|
| 832 |
|
| 833 |
|
| 834 |
def get_lora_info(lora_path: str):
|
|
|
|
| 889 |
return gr.update(value=prompt)
|
| 890 |
|
| 891 |
|
| 892 |
+
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt):
|
| 893 |
on1, label1, tag1, md1 = get_lora_info(lora1)
|
| 894 |
on2, label2, tag2, md2 = get_lora_info(lora2)
|
| 895 |
on3, label3, tag3, md3 = get_lora_info(lora3)
|
| 896 |
on4, label4, tag4, md4 = get_lora_info(lora4)
|
| 897 |
on5, label5, tag5, md5 = get_lora_info(lora5)
|
| 898 |
+
on6, label6, tag6, md6 = get_lora_info(lora6)
|
| 899 |
+
on7, label7, tag7, md7 = get_lora_info(lora7)
|
| 900 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
|
| 901 |
|
| 902 |
output_prompt = prompt
|
| 903 |
if "Classic" in str(prompt_syntax):
|
|
|
|
| 922 |
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
|
| 923 |
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
|
| 924 |
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
|
| 925 |
+
#if on6: lora_prompts.append(f"<lora:{to_lora_key(lora6)}:{lora6_wt:.2f}>")
|
| 926 |
+
#if on7: lora_prompts.append(f"<lora:{to_lora_key(lora7)}:{lora7_wt:.2f}>")
|
| 927 |
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
|
| 928 |
choices = get_all_lora_tupled_list()
|
| 929 |
|
|
|
|
| 936 |
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
|
| 937 |
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
|
| 938 |
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
|
| 939 |
+
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5),\
|
| 940 |
+
gr.update(value=lora6, choices=choices), gr.update(value=lora6_wt),\
|
| 941 |
+
gr.update(value=tag6, label=label6, visible=on6), gr.update(visible=on6), gr.update(value=md6, visible=on6),\
|
| 942 |
+
gr.update(value=lora7, choices=choices), gr.update(value=lora7_wt),\
|
| 943 |
+
gr.update(value=tag7, label=label7, visible=on7), gr.update(visible=on7), gr.update(value=md7, visible=on7)
|
| 944 |
|
| 945 |
|
| 946 |
def get_my_lora(link_url, romanize):
|
|
|
|
| 959 |
path.resolve().rename(new_path.resolve())
|
| 960 |
update_lora_dict(str(new_path))
|
| 961 |
l_path = str(new_path)
|
|
|
|
| 962 |
new_lora_tupled_list = get_all_lora_tupled_list()
|
| 963 |
msg_lora = "Downloaded"
|
| 964 |
if l_name:
|
|
|
|
| 975 |
choices=new_lora_tupled_list
|
| 976 |
), gr.update(
|
| 977 |
choices=new_lora_tupled_list
|
| 978 |
+
), gr.update(
|
| 979 |
+
choices=new_lora_tupled_list
|
| 980 |
+
), gr.update(
|
| 981 |
+
choices=new_lora_tupled_list
|
| 982 |
), gr.update(
|
| 983 |
value=msg_lora
|
| 984 |
)
|
|
|
|
| 1011 |
choices=new_lora_tupled_list
|
| 1012 |
), gr.update(
|
| 1013 |
choices=new_lora_tupled_list
|
| 1014 |
+
), gr.update(
|
| 1015 |
+
choices=new_lora_tupled_list
|
| 1016 |
+
), gr.update(
|
| 1017 |
+
choices=new_lora_tupled_list
|
| 1018 |
)
|
| 1019 |
|
| 1020 |
|
| 1021 |
+
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Most Liked", "Most Discussed", "Most Collected", "Most Buzz", "Newest"]
|
| 1022 |
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
|
| 1023 |
+
CIVITAI_BASEMODEL = ["Pony", "Illustrious", "SDXL 1.0", "SD 1.5", "Flux.1 D", "Flux.1 S"] # , "SD 3.5"
|
| 1024 |
+
CIVITAI_TYPE = ["Checkpoint", "TextualInversion", "Hypernetwork", "AestheticGradient", "LORA", "LoCon", "DoRA",
|
| 1025 |
+
"Controlnet", "Upscaler", "MotionModule", "VAE", "Poses", "Wildcards", "Workflows", "Other"]
|
| 1026 |
+
CIVITAI_FILETYPE = ["Model", "VAE", "Config", "Training Data"]
|
| 1027 |
|
| 1028 |
|
| 1029 |
def get_civitai_info(path):
|
|
|
|
| 1068 |
sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1):
|
| 1069 |
user_agent = get_user_agent()
|
| 1070 |
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
| 1071 |
+
if CIVITAI_API_KEY: headers['Authorization'] = f'Bearer {{{CIVITAI_API_KEY}}}'
|
| 1072 |
base_url = 'https://civitai.com/api/v1/models'
|
| 1073 |
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'}
|
| 1074 |
if query: params["query"] = query
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
git+https://github.com/R3gm/stablepy.git@
|
| 2 |
torch==2.2.0
|
| 3 |
numpy<2
|
| 4 |
gdown
|
|
|
|
| 1 |
+
git+https://github.com/R3gm/stablepy.git@a9fe2dc # -b refactor_sampler_fix
|
| 2 |
torch==2.2.0
|
| 3 |
numpy<2
|
| 4 |
gdown
|
utils.py
CHANGED
|
@@ -274,6 +274,10 @@ def get_my_lora(link_url, romanize):
|
|
| 274 |
choices=new_lora_model_list
|
| 275 |
), gr.update(
|
| 276 |
choices=new_lora_model_list
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
), gr.update(
|
| 278 |
value=msg_lora
|
| 279 |
)
|
|
|
|
| 274 |
choices=new_lora_model_list
|
| 275 |
), gr.update(
|
| 276 |
choices=new_lora_model_list
|
| 277 |
+
), gr.update(
|
| 278 |
+
choices=new_lora_model_list
|
| 279 |
+
), gr.update(
|
| 280 |
+
choices=new_lora_model_list
|
| 281 |
), gr.update(
|
| 282 |
value=msg_lora
|
| 283 |
)
|