### `data_factory` Function Overview The `data_factory` function is a decorator designed for creating data processing pipelines. It is defined in the `factory.py` file of the `starfish.data_factory` module. This decorator facilitates the set up and execution of data pipeline tasks, supporting various configurations for concurrency, error handling, and storage options. #### Function Signature ```python def data_factory( storage: str = STORAGE_TYPE_LOCAL, batch_size: int = 1, target_count: int = 0, dead_queue_threshold: int = 3, max_concurrency: int = 10, initial_state_values: Optional[Dict[str, Any]] = None, on_record_complete: Optional[List[Callable]] = None, on_record_error: Optional[List[Callable]] = None, show_progress: bool = True, task_runner_timeout: int = TASK_RUNNER_TIMEOUT, job_run_stop_threshold: int = NOT_COMPLETED_THRESHOLD, ) -> Callable[[Callable[P, T]], DataFactoryProtocol[P, T]]: ``` #### Key Arguments - **`storage`**: Type of storage backend to use, such as 'local' or 'in_memory'. - **`batch_size`**: Number of records processed in each batch. - **`target_count`**: The target number of records to generate. A value of 0 denotes processing all available input records. - **`max_concurrency`**: Maximum number of concurrent tasks that can be executed. - **`initial_state_values`**: Initial shared state values for the factory. - **`on_record_complete`**: List of callback functions to execute upon the successful processing of a record. - **`on_record_error`**: List of callback functions to execute if record processing fails. - **`show_progress`**: Boolean indicating whether a progress bar should be displayed. - **`task_runner_timeout`**: Timeout for task execution in seconds. - **`job_run_stop_threshold`**: Threshold to stop the job if a significant number of records fail processing. #### Functionality - **Decorator Creation**: The `data_factory` function serves as a decorator that wraps a function responsible for processing data. It provides mechanisms for customizing various aspects of the pipeline such as concurrency and error handling. - **Configuration**: It initializes a configuration object `FactoryMasterConfig`, which holds the aforementioned parameters. - **Factory Initialization**: The decorator internally initializes or updates a factory instance, using the provided function and state values. - **Resume Capability**: The decorator adds a static method `resume_from_checkpoint` to allow a paused data processing job to be resumed. This structured and highly configurable decorator pattern allows for scalability and flexibility in creating sophisticated data processing pipelines.