Spaces:
Sleeping
Sleeping
File size: 6,980 Bytes
8df9fb2 628f881 5162902 8df9fb2 5162902 8df9fb2 1a468e6 8df9fb2 9f03894 8df9fb2 1a468e6 9f03894 1a468e6 8df9fb2 5162902 8df9fb2 5162902 8df9fb2 5162902 8df9fb2 5162902 1a468e6 5162902 8df9fb2 628f881 5162902 1a468e6 5162902 628f881 5162902 8df9fb2 5162902 8df9fb2 f371603 8df9fb2 5162902 8df9fb2 5162902 8df9fb2 5162902 8df9fb2 628f881 5162902 1a468e6 5162902 1a468e6 8df9fb2 5162902 8df9fb2 1a468e6 5162902 1a468e6 5162902 1a468e6 8df9fb2 5162902 8df9fb2 1a468e6 5162902 1a468e6 5162902 1a468e6 5162902 1a468e6 5162902 1a468e6 5162902 1a468e6 8df9fb2 5162902 1a468e6 5162902 1a468e6 5162902 1a468e6 8df9fb2 5162902 1a468e6 8df9fb2 5162902 8df9fb2 5162902 8df9fb2 1a468e6 8df9fb2 5162902 8df9fb2 5162902 8df9fb2 5162902 1a468e6 5162902 f371603 8df9fb2 5162902 1a468e6 8df9fb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import spaces
from monitoring import PerformanceMonitor, measure_time
# Model configurations
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
# Initialize performance monitor
monitor = PerformanceMonitor()
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token
print("Loading base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_safetensors=True
)
print("Loading fine-tuned model...")
finetuned_model = PeftModel.from_pretrained(
base_model,
ADAPTER_MODEL,
torch_dtype=torch.float16,
device_map="auto"
)
# Set models to eval mode
base_model.eval()
finetuned_model.eval()
def format_prompt(problem: str, problem_type: str) -> str:
"""Format input prompt for the model"""
if problem_type == "Derivative":
return f"""Given a mathematical function, find its derivative.
Function: {problem}
The derivative of this function is:"""
elif problem_type == "Addition":
return f"""Solve this addition problem.
Problem: {problem}
The solution is:"""
else: # Roots
return f"""Find the roots of this equation.
Equation: {problem}
The roots are:"""
@spaces.GPU
@measure_time
def get_model_response(problem: str, problem_type: str, model) -> str:
"""Generate response from model"""
# Format prompt
prompt = format_prompt(problem, problem_type)
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=100,
num_return_sequences=1,
temperature=0.1,
do_sample=False, # Deterministic generation
pad_token_id=tokenizer.eos_token_id
)
# Decode and extract response
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = generated[len(prompt):].strip()
return response
@spaces.GPU
def solve_problem(problem: str, problem_type: str) -> tuple:
"""Solve math problem with both models"""
if not problem:
return "Please enter a problem", "Please enter a problem", None
# Record problem type
monitor.record_problem_type(problem_type)
# Get responses from both models with timing
base_response, base_time = get_model_response(problem, problem_type, base_model)
finetuned_response, finetuned_time = get_model_response(problem, problem_type, finetuned_model)
# Format outputs with steps
if problem_type == "Derivative":
base_output = f"""Generated derivative: {base_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {base_response}"""
finetuned_output = f"""Generated derivative: {finetuned_response}
Let's verify this step by step:
1. Starting with f(x) = {problem}
2. Applying differentiation rules
3. We get f'(x) = {finetuned_response}"""
elif problem_type == "Addition":
base_output = f"""Solution: {base_response}
Let's verify this step by step:
1. Starting with: {problem}
2. Adding the numbers
3. We get: {base_response}"""
finetuned_output = f"""Solution: {finetuned_response}
Let's verify this step by step:
1. Starting with: {problem}
2. Adding the numbers
3. We get: {finetuned_response}"""
else: # Roots
base_output = f"""Found roots: {base_response}
Let's verify this step by step:
1. Starting with equation: {problem}
2. Solving for x
3. Roots are: {base_response}"""
finetuned_output = f"""Found roots: {finetuned_response}
Let's verify this step by step:
1. Starting with equation: {problem}
2. Solving for x
3. Roots are: {finetuned_response}"""
# Record metrics
monitor.record_response_time("base", base_time)
monitor.record_response_time("finetuned", finetuned_time)
monitor.record_success("base", not base_response.startswith("Error"))
monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
# Get updated statistics
stats = monitor.get_statistics()
# Format statistics for display
stats_display = f"""
### Performance Metrics
#### Response Times (seconds)
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg
#### Success Rates
- Base Model: {stats.get('base_success_rate', 0):.1f}%
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%
#### Problem Types Used
"""
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
stats_display += f"- {ptype}: {percentage:.1f}%\n"
return base_output, finetuned_output, stats_display
# Create Gradio interface
with gr.Blocks(title="Mathematics Problem Solver") as demo:
gr.Markdown("# Mathematics Problem Solver")
gr.Markdown("Compare solutions between base and fine-tuned models")
with gr.Row():
with gr.Column():
problem_type = gr.Dropdown(
choices=["Derivative", "Addition", "Roots"],
value="Derivative",
label="Problem Type"
)
problem_input = gr.Textbox(
label="Enter your problem",
placeholder="Example: x^2 + 3x"
)
solve_btn = gr.Button("Solve", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Base Model")
base_output = gr.Textbox(label="Base Model Solution", lines=6)
with gr.Column():
gr.Markdown("### Fine-tuned Model")
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=6)
# Performance metrics display
with gr.Row():
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
# Example problems
gr.Examples(
examples=[
["x^2 + 3x", "Derivative"],
["235 + 567", "Addition"],
["x^2 - 4", "Roots"],
["\\sin{\\left(x\\right)}", "Derivative"],
["e^x", "Derivative"],
["\\frac{1}{x}", "Derivative"]
],
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display],
fn=solve_problem,
cache_examples=False # Disable caching
)
# Connect the interface
solve_btn.click(
fn=solve_problem,
inputs=[problem_input, problem_type],
outputs=[base_output, finetuned_output, metrics_display]
)
if __name__ == "__main__":
demo.launch()
|