math-llm-demo / monitoring.py
Joash2024's picture
Add initial demo files
0e7ff76
import time
from datetime import datetime
import json
import os
from collections import defaultdict
import threading
import numpy as np
class PerformanceMonitor:
def __init__(self, metrics_file="metrics.json"):
self.metrics_file = metrics_file
self.metrics = defaultdict(list)
self.lock = threading.Lock()
self._load_metrics()
def _load_metrics(self):
"""Load existing metrics from file"""
if os.path.exists(self.metrics_file):
try:
with open(self.metrics_file, 'r') as f:
self.metrics.update(json.load(f))
except json.JSONDecodeError:
pass
def _save_metrics(self):
"""Save metrics to file"""
with self.lock:
with open(self.metrics_file, 'w') as f:
json.dump(dict(self.metrics), f)
def record_response_time(self, model_id, duration):
"""Record response time for a model"""
with self.lock:
self.metrics[f"{model_id}_response_times"].append({
'timestamp': datetime.now().isoformat(),
'duration': duration
})
self._save_metrics()
def record_success(self, model_id, success):
"""Record success/failure for a model"""
with self.lock:
self.metrics[f"{model_id}_success_rate"].append({
'timestamp': datetime.now().isoformat(),
'success': success
})
self._save_metrics()
def record_problem_type(self, problem_type):
"""Record usage of different problem types"""
with self.lock:
self.metrics['problem_types'].append({
'timestamp': datetime.now().isoformat(),
'type': problem_type
})
self._save_metrics()
def get_statistics(self):
"""Calculate and return performance statistics"""
stats = {}
# Response time statistics
for model in ['base', 'finetuned']:
times = [x['duration'] for x in self.metrics.get(f"{model}_response_times", [])]
if times:
stats[f"{model}_avg_response_time"] = np.mean(times)
stats[f"{model}_max_response_time"] = np.max(times)
stats[f"{model}_min_response_time"] = np.min(times)
# Success rate statistics
for model in ['base', 'finetuned']:
successes = [x['success'] for x in self.metrics.get(f"{model}_success_rate", [])]
if successes:
stats[f"{model}_success_rate"] = sum(successes) / len(successes) * 100
# Problem type distribution
problem_types = [x['type'] for x in self.metrics.get('problem_types', [])]
if problem_types:
type_counts = defaultdict(int)
for ptype in problem_types:
type_counts[ptype] += 1
total = len(problem_types)
stats['problem_type_distribution'] = {
ptype: (count / total) * 100
for ptype, count in type_counts.items()
}
return stats
def measure_time(func):
"""Decorator to measure function execution time"""
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
duration = time.time() - start_time
return result, duration
return wrapper