Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
from monitoring import PerformanceMonitor, measure_time | |
# Model configurations | |
MODEL_OPTIONS = { | |
"Base Model": { | |
"id": "HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
"is_base": True | |
}, | |
"Fine-tuned Model": { | |
"id": "Joash2024/Math-SmolLM2-1.7B", | |
"is_base": False | |
} | |
} | |
# Initialize performance monitor | |
monitor = PerformanceMonitor() | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct") | |
tokenizer.pad_token = tokenizer.eos_token | |
def format_prompt(problem: str, problem_type: str) -> str: | |
"""Format input prompt for the model""" | |
if problem_type == "Derivative": | |
return f"""Given a mathematical function, find its derivative. | |
Function: {problem} | |
The derivative of this function is:""" | |
elif problem_type == "Addition": | |
return f"""Solve this addition problem. | |
Problem: {problem} | |
The solution is:""" | |
else: # Roots or Custom | |
return f"""Find the derivative of this function. | |
Function: {problem} | |
The derivative is:""" | |
def get_model_response(problem: str, problem_type: str, model_info) -> str: | |
"""Get response from a specific model""" | |
try: | |
# Load model | |
if model_info["is_base"]: | |
print(f"Loading {model_info['id']}...") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_info["id"], | |
device_map="auto", | |
torch_dtype=torch.float16 | |
) | |
else: | |
print("Loading base model for fine-tuned...") | |
base = AutoModelForCausalLM.from_pretrained( | |
"HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
device_map="auto", | |
torch_dtype=torch.float16 | |
) | |
print(f"Loading {model_info['id']}...") | |
model = PeftModel.from_pretrained(base, model_info["id"]) | |
model.eval() | |
# Format prompt and generate | |
prompt = format_prompt(problem, problem_type) | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_length=100, | |
num_return_sequences=1, | |
temperature=0.1, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode and extract response | |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = generated[len(prompt):].strip() | |
# Clean up | |
del model | |
if not model_info["is_base"]: | |
del base | |
torch.cuda.empty_cache() | |
return response | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def solve_problem(problem: str, problem_type: str, model_type: str) -> tuple: | |
"""Solve a math problem using selected model""" | |
if not problem: | |
return "Please enter a problem", None | |
# Record problem type | |
monitor.record_problem_type(problem_type) | |
# Get response from selected model | |
model_info = MODEL_OPTIONS[model_type] | |
response, time_taken = get_model_response(problem, problem_type, model_info) | |
# Format response with steps | |
output = f"""Solution: {response} | |
Let's verify this step by step: | |
1. Starting with f(x) = {problem} | |
2. Applying differentiation rules | |
3. We get f'(x) = {response}""" | |
# Record metrics | |
monitor.record_response_time(model_type, time_taken) | |
monitor.record_success(model_type, not response.startswith("Error")) | |
# Get updated statistics | |
stats = monitor.get_statistics() | |
# Format statistics for display | |
stats_display = f""" | |
### Performance Metrics | |
#### Response Times (seconds) | |
- {model_type}: {stats.get(f'{model_type}_avg_response_time', 0):.2f} avg | |
#### Success Rates | |
- {model_type}: {stats.get(f'{model_type}_success_rate', 0):.1f}% | |
#### Problem Types Used | |
""" | |
for ptype, percentage in stats.get('problem_type_distribution', {}).items(): | |
stats_display += f"- {ptype}: {percentage:.1f}%\n" | |
return output, stats_display | |
# Create Gradio interface | |
with gr.Blocks(title="Mathematics Problem Solver") as demo: | |
gr.Markdown("# Mathematics Problem Solver") | |
gr.Markdown("Test our models on mathematical problems") | |
with gr.Row(): | |
with gr.Column(): | |
problem_type = gr.Dropdown( | |
choices=["Addition", "Root Finding", "Derivative", "Custom"], | |
value="Derivative", | |
label="Problem Type" | |
) | |
model_type = gr.Dropdown( | |
choices=list(MODEL_OPTIONS.keys()), | |
value="Fine-tuned Model", | |
label="Model to Use" | |
) | |
problem_input = gr.Textbox( | |
label="Enter your math problem", | |
placeholder="Example: x^2 + 3x" | |
) | |
solve_btn = gr.Button("Solve", variant="primary") | |
with gr.Row(): | |
solution_output = gr.Textbox(label="Solution", lines=5) | |
# Performance metrics display | |
with gr.Row(): | |
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*") | |
# Example problems | |
gr.Examples( | |
examples=[ | |
["x^2 + 3x", "Derivative", "Fine-tuned Model"], | |
["144", "Root Finding", "Fine-tuned Model"], | |
["235 + 567", "Addition", "Fine-tuned Model"], | |
["\\sin{\\left(x\\right)}", "Derivative", "Fine-tuned Model"], | |
["e^x", "Derivative", "Fine-tuned Model"], | |
["\\frac{1}{x}", "Derivative", "Fine-tuned Model"], | |
["x^3 + 2x", "Derivative", "Fine-tuned Model"], | |
["\\cos{\\left(x^2\\right)}", "Derivative", "Fine-tuned Model"] | |
], | |
inputs=[problem_input, problem_type, model_type], | |
outputs=[solution_output, metrics_display], | |
fn=solve_problem, | |
cache_examples=True, | |
) | |
# Connect the interface | |
solve_btn.click( | |
fn=solve_problem, | |
inputs=[problem_input, problem_type, model_type], | |
outputs=[solution_output, metrics_display] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |