JiwonGigiShin's picture
Update app.py
0081c7f verified
raw
history blame
1.44 kB
import streamlit as st
import torch
from transformers import YolosImageProcessor, YolosForObjectDetection, pipeline
from PIL import Image
import requests
st.title("Welcome to πŸ‡·πŸ‡Ί Translator App!πŸͺ†")
input = st.text_area("Your input here! πŸ‡¬πŸ‡§")
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
st.write(pipe(input)[0]['translation_text'])
# url = st.text_area("Put your URL here")
# if url:
# image = Image.open(requests.get(url, stream=True).raw)
# st.image(image)
# model = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny')
# image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny")
# inputs = image_processor(images=image, return_tensors="pt")
# outputs = model(**inputs)
# # model predicts bounding boxes and corresponding COCO classes
# logits = outputs.logits
# bboxes = outputs.pred_boxes
# st.image(bboxes)
# # print results
# target_sizes = torch.tensor([image.size[::-1]])
# results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
# for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
# box = [round(i, 2) for i in box.tolist()]
# st.write(
# f"Detected {model.config.id2label[label.item()]} with confidence "
# f"{round(score.item(), 3)} at location {box}"
# )