Spaces:
Paused
Paused
| import soundfile as sf | |
| import json | |
| import torch | |
| from tqdm import tqdm | |
| from huggingface_hub import snapshot_download | |
| from models import AudioDiffusion, DDPMScheduler | |
| from audioldm.audio.stft import TacotronSTFT | |
| from audioldm.variational_autoencoder import AutoencoderKL | |
| class Tango: | |
| def __init__(self, name="declare-lab/tango", device="cuda:0"): | |
| path = snapshot_download(repo_id=name) | |
| vae_config = json.load(open("{}/vae_config.json".format(path))) | |
| stft_config = json.load(open("{}/stft_config.json".format(path))) | |
| main_config = json.load(open("{}/main_config.json".format(path))) | |
| self.vae = AutoencoderKL(**vae_config).to(device) | |
| self.stft = TacotronSTFT(**stft_config).to(device) | |
| self.model = AudioDiffusion(**main_config).to(device) | |
| vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) | |
| stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) | |
| main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) | |
| self.vae.load_state_dict(vae_weights) | |
| self.stft.load_state_dict(stft_weights) | |
| self.model.load_state_dict(main_weights) | |
| print ("Successfully loaded checkpoint from:", name) | |
| self.vae.eval() | |
| self.stft.eval() | |
| self.model.eval() | |
| self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") | |
| def chunks(self, lst, n): | |
| """ Yield successive n-sized chunks from a list. """ | |
| for i in range(0, len(lst), n): | |
| yield lst[i:i + n] | |
| def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): | |
| """ Genrate audio for a single prompt string. """ | |
| with torch.no_grad(): | |
| latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
| mel = self.vae.decode_first_stage(latents) | |
| wave = self.vae.decode_to_waveform(mel) | |
| return wave[0] | |
| def generate_for_batch(self, prompts, steps=100, guidance=3, samples=1, batch_size=8, disable_progress=True): | |
| """ Genrate audio for a list of prompt strings. """ | |
| outputs = [] | |
| for k in tqdm(range(0, len(prompts), batch_size)): | |
| batch = prompts[k: k+batch_size] | |
| with torch.no_grad(): | |
| latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
| mel = self.vae.decode_first_stage(latents) | |
| wave = self.vae.decode_to_waveform(mel) | |
| outputs += [item for item in wave] | |
| if samples == 1: | |
| return outputs | |
| else: | |
| return list(self.chunks(outputs, samples)) | |
| tango = Tango("declare-lab/tango2") | |
| prompt = "classical piano" | |
| audio = tango.generate(prompt) | |
| sf.write(f"{prompt}.wav", audio, samplerate=16000) |