AudioMorphix / src /model /pipeline.py
JinhuaL1ANG's picture
v1
9a6dac6
raw
history blame
21.3 kB
import gc
import os
import yaml
import inspect
import torch
import torch.nn as nn
import numpy as np
from diffusers import DDIMScheduler
from PIL import Image
# from basicsr.utils import tensor2img
from diffusers import AutoencoderKL
from diffusers.utils.torch_utils import randn_tensor
from transformers import (
CLIPTextModel,
CLIPTokenizer,
AutoTokenizer,
CLIPVisionModelWithProjection,
CLIPImageProcessor,
ClapTextModelWithProjection,
RobertaTokenizer,
RobertaTokenizerFast,
SpeechT5HifiGan,
)
from diffusers.utils.import_utils import is_xformers_available
from src.module.unet.unet_2d_condition import (
CustomUNet2DConditionModel,
UNet2DConditionModel,
)
from src.module.unet.estimator import _UNet2DConditionModel
from src.utils.inversion import DDIMInversion
from src.module.unet.attention_processor import (
IPAttnProcessor,
AttnProcessor,
Resampler,
)
from src.model.sampler import Sampler
from src.utils.audio_processing import extract_fbank, wav_to_fbank, TacotronSTFT, maybe_add_dimension
import sys
sys.path.append("src/module/tango")
from tools.torch_tools import wav_to_fbank as tng_wav_to_fbank
CWD = os.getcwd()
class TangoPipeline:
def __init__(
self,
sd_id="declare-lab/tango",
NUM_DDIM_STEPS=100,
precision=torch.float32,
device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),
**kwargs,
):
import sys
import json
import torch
from huggingface_hub import snapshot_download
sys.path.append("./src/module/tango")
from tango2.models import AudioDiffusion
from audioldm.audio.stft import TacotronSTFT as tng_TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
path = snapshot_download(repo_id=sd_id)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
main_config["unet_model_config_path"] = os.path.join(
CWD, "src/module/tango", main_config["unet_model_config_path"]
)
unet = self._set_unet2dconditional_model(
CustomUNet2DConditionModel,
unet_model_name=main_config["unet_model_name"],
unet_model_config_path=main_config["unet_model_config_path"],
).to(device)
feature_estimator = self._set_unet2dconditional_model(
_UNet2DConditionModel,
unet_model_name=main_config["unet_model_name"],
unet_model_config_path=main_config["unet_model_config_path"],
).to(device)
##### Load pretrained model #####
vae = AutoencoderKL(**vae_config).to(device)
vae.dtype = torch.float32 # avoid attribute missing
stft = tng_TacotronSTFT(**stft_config).to(device)
model = AudioDiffusion(**main_config).to(device)
model.unet = unet # replace unet with the custom unet
vae_weights = torch.load(
"{}/pytorch_model_vae.bin".format(path), map_location=device
)
stft_weights = torch.load(
"{}/pytorch_model_stft.bin".format(path), map_location=device
)
main_weights = torch.load(
"{}/pytorch_model_main.bin".format(path), map_location=device
)
vae.load_state_dict(vae_weights)
stft.load_state_dict(stft_weights)
model.load_state_dict(main_weights)
unet_weights = {".".join(layer.split(".")[1:]): param for layer, param in model.named_parameters() if "unet" in layer}
feature_estimator.load_state_dict(unet_weights)
vae.eval()
stft.eval()
model.eval()
feature_estimator.eval()
# Free memeory
del vae_weights
del stft_weights
del main_weights
del unet_weights
feature_estimator.scheduler = DDIMScheduler.from_pretrained(
main_config["scheduler_name"], subfolder="scheduler"
)
# Create pipeline for audio editing
onestep_pipe = Sampler(
vae=vae,
tokenizer=model.tokenizer,
text_encoder=model.text_encoder,
unet=model.unet,
feature_estimator=feature_estimator,
scheduler=DDIMScheduler.from_pretrained(
main_config["scheduler_name"], subfolder="scheduler"
),
device=device,
precision=precision,
)
onestep_pipe.use_cross_attn = True
gc.collect()
onestep_pipe.enable_attention_slicing()
if is_xformers_available():
onestep_pipe.feature_estimator.enable_xformers_memory_efficient_attention()
onestep_pipe.enable_xformers_memory_efficient_attention()
self.pipe = onestep_pipe
self.fn_STFT = stft
self.vae_scale_factor = vae_config["ddconfig"]["ch_mult"][-1]
self.NUM_DDIM_STEPS = NUM_DDIM_STEPS
self.num_tokens = 512 # flant5
self.precision = precision
self.device = device
# self.load_adapter() # replace the 1-st self-attn layer with cross-attn difference trajactory
def _set_unet2dconditional_model(
self,
cls_obj: UNet2DConditionModel,
*,
unet_model_name=None,
unet_model_config_path=None,
):
assert (
unet_model_name is not None or unet_model_config_path is not None
), "Either UNet pretrain model name or a config file path is required"
if unet_model_config_path:
unet_config = cls_obj.load_config(unet_model_config_path)
unet = cls_obj.from_config(unet_config, subfolder="unet")
unet.set_from = "random"
else:
unet = cls_obj.from_pretrained(unet_model_name, subfolder="unet")
unet.set_from = "pre-trained"
unet.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
unet.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
return unet
@torch.no_grad()
def decode_latents(self, latents):
return self.pipe.vae.decode_first_stage(latents)
@torch.no_grad()
def mel_spectrogram_to_waveform(self, mel_spectrogram):
return self.pipe.vae.decode_to_waveform(mel_spectrogram)
def get_fbank(self, audio_or_path, stft_cfg, return_intermediate=False):
r"""Helper function to get fbank from audio file."""
if isinstance(audio_or_path, torch.Tensor):
return maybe_add_dimension(audio_or_path, 4)
if isinstance(audio_or_path, str):
fbank, log_stft, wav = tng_wav_to_fbank(
[audio_or_path],
fn_STFT=self.fn_STFT,
target_length=stft_cfg.filter_length,
)
fbank = maybe_add_dimension(fbank, 4) # (B,C,T,F)
if return_intermediate:
return fbank, log_stft, wav
return fbank
@torch.no_grad()
def encode_fbank(self, fbank):
return self.pipe.vae.get_first_stage_encoding(
self.pipe.vae.encode_first_stage(fbank)
)
@torch.no_grad()
def fbank2latent(self, fbank):
latent = self.encode_fbank(fbank)
return latent
def ddim_inv(self, latent, prompt, emb_im=None, save_kv=True, mode="mix", prediction_type="v_prediction"):
ddim_inv = DDIMInversion(model=self.pipe, NUM_DDIM_STEPS=self.NUM_DDIM_STEPS)
ddim_latents = ddim_inv.invert(
ddim_latents=latent.unsqueeze(2), prompt=prompt, emb_im=emb_im,
save_kv=save_kv, mode=mode, prediction_type=prediction_type,
)
return ddim_latents
def init_proj(self, precision):
image_proj_model = Resampler(
dim=self.pipe.unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.num_tokens,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4,
).to("cuda", dtype=precision)
return image_proj_model
def load_adapter(self):
scale = 1.0
attn_procs = {}
for name in self.pipe.unet.attn_processors.keys():
cross_attention_dim = None
if name.startswith("mid_block"):
hidden_size = self.pipe.unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.pipe.unet.config.block_out_channels))[
block_id
]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.pipe.unet.config.block_out_channels[block_id]
# Only the first self-attention should be used for cross-attend different trojactory
if name.endswith("attn1.processor"):
attn_procs[name] = AttnProcessor()
else:
attn_procs[name] = IPAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=scale,
num_tokens=self.num_tokens,
).to("cuda", dtype=self.precision)
self.pipe.unet.set_attn_processor(attn_procs)
class AudioLDMPipeline:
def __init__(
self,
sd_id="cvssp/audioldm-l-full",
ip_id="cvssp/audioldm-l-full",
NUM_DDIM_STEPS=50,
precision=torch.float32,
ip_scale=0,
device = torch.device("cuda" if torch.cuda.is_available() else "cpu"),
):
onestep_pipe = Sampler(
vae=AutoencoderKL.from_pretrained(
sd_id, subfolder="vae", torch_dtype=precision
),
tokenizer=RobertaTokenizerFast.from_pretrained(
sd_id, subfolder="tokenizer"
),
text_encoder=ClapTextModelWithProjection.from_pretrained(
sd_id, subfolder="text_encoder", torch_dtype=precision
),
unet=CustomUNet2DConditionModel.from_pretrained(
sd_id, subfolder="unet", torch_dtype=precision
),
feature_estimator=_UNet2DConditionModel.from_pretrained(
sd_id,
subfolder="unet",
vae=None,
text_encoder=None,
tokenizer=None,
scheduler=DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler"),
safety_checker=None,
feature_extractor=None,
),
scheduler=DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler"),
device=device,
precision=precision,
)
onestep_pipe.vocoder = SpeechT5HifiGan.from_pretrained(
sd_id, subfolder="vocoder", torch_dtype=precision
)
onestep_pipe.use_cross_attn = False
gc.collect()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
onestep_pipe = onestep_pipe.to(device)
onestep_pipe.vocoder.to(device)
onestep_pipe.enable_attention_slicing()
if is_xformers_available():
onestep_pipe.feature_estimator.enable_xformers_memory_efficient_attention()
onestep_pipe.enable_xformers_memory_efficient_attention()
self.pipe = onestep_pipe
self.vae_scale_factor = 2 ** (len(self.pipe.vae.config.block_out_channels) - 1)
self.NUM_DDIM_STEPS = NUM_DDIM_STEPS
self.precision = precision
self.device = device
self.num_tokens = 64
# This is fixed as per pretrained model
self.fn_STFT = TacotronSTFT(
filter_length=1024,
hop_length=160,
win_length=1024,
n_mel_channels=64,
sampling_rate=16000,
mel_fmin=0,
mel_fmax=8000,
)
# self.load_adapter()
@torch.no_grad()
def decode_latents(self, latents):
latents = 1 / self.pipe.vae.config.scaling_factor * latents
mel_spectrogram = self.pipe.vae.decode(latents).sample
return mel_spectrogram
@torch.no_grad()
def mel_spectrogram_to_waveform(self, mel_spectrogram):
if mel_spectrogram.dim() == 4:
mel_spectrogram = mel_spectrogram.squeeze(1)
waveform = self.pipe.vocoder(
mel_spectrogram.to(device=self.device, dtype=self.precision)
)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
waveform = waveform.cpu().float()
return waveform
@torch.no_grad()
def fbank2latent(self, fbank):
latent = self.encode_fbank(fbank)
return latent
def get_fbank(self, audio_or_path, stft_cfg, return_intermediate=False):
r"""Helper function to get fbank from audio file."""
if isinstance(audio_or_path, torch.Tensor):
return maybe_add_dimension(audio_or_path, 3)
if isinstance(audio_or_path, str):
fbank, log_stft, wav = extract_fbank(
audio_or_path,
fn_STFT=self.fn_STFT,
target_length=stft_cfg.filter_length,
hop_size=stft_cfg.hop_length,
)
fbank = maybe_add_dimension(fbank, 3) # (C,T,F)
if return_intermediate:
return fbank, log_stft, wav
return fbank
def wav2fbank(self, wav, target_length):
fbank, log_magnitudes_stft = wav_to_fbank(wav, target_length, self.fn_STFT)
return fbank, log_magnitudes_stft
@torch.no_grad()
def encode_fbank(self, fbank):
latent = self.pipe.vae.encode(fbank)["latent_dist"].mean
# NOTE: Scale the noise latent
latent = latent * self.pipe.scheduler.init_noise_sigma
return latent
def ddim_inv(self, latent, prompt, emb_im=None, save_kv=True, mode="mix", prediction_type="epsilon"):
ddim_inv = DDIMInversion(model=self.pipe, NUM_DDIM_STEPS=self.NUM_DDIM_STEPS)
ddim_latents = ddim_inv.invert(
ddim_latents=latent.unsqueeze(2), prompt=prompt, emb_im=emb_im,
save_kv=save_kv, mode=mode, prediction_type=prediction_type
)
return ddim_latents
def init_proj(self, precision):
image_proj_model = Resampler(
dim=self.pipe.unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.num_tokens,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4,
).to("cuda", dtype=precision)
return image_proj_model
# @torch.inference_mode()
# def get_image_embeds(self, pil_image):
# if isinstance(pil_image, Image.Image):
# pil_image = [pil_image]
# clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
# clip_image = clip_image.to('cuda', dtype=self.precision)
# clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
# image_prompt_embeds = self.image_proj_model(clip_image_embeds)
# uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2].detach()
# uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds).detach()
# return image_prompt_embeds, uncond_image_prompt_embeds
def load_adapter(self):
scale = 1.0
attn_procs = {}
for name in self.pipe.unet.attn_processors.keys():
cross_attention_dim = None
if name.startswith("mid_block"):
hidden_size = self.pipe.unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.pipe.unet.config.block_out_channels))[
block_id
]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.pipe.unet.config.block_out_channels[block_id]
# Only the first self-attention should be used for cross-attend different trojactory
if name.endswith("attn1.processor"):
attn_procs[name] = AttnProcessor()
else:
attn_procs[name] = IPAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=scale,
num_tokens=self.num_tokens,
).to("cuda", dtype=self.precision)
self.pipe.unet.set_attn_processor(attn_procs)
# def load_adapter(self, model_path, scale=1.0):
# from src.unet.attention_processor import IPAttnProcessor, AttnProcessor, Resampler
# attn_procs = {}
# for name in self.pipe.unet.attn_processors.keys():
# cross_attention_dim = None if name.endswith("attn1.processor") else self.pipe.unet.config.cross_attention_dim
# if name.startswith("mid_block"):
# hidden_size = self.pipe.unet.config.block_out_channels[-1]
# elif name.startswith("up_blocks"):
# block_id = int(name[len("up_blocks.")])
# hidden_size = list(reversed(self.pipe.unet.config.block_out_channels))[block_id]
# elif name.startswith("down_blocks"):
# block_id = int(name[len("down_blocks.")])
# hidden_size = self.pipe.unet.config.block_out_channels[block_id]
# if cross_attention_dim is None:
# attn_procs[name] = AttnProcessor()
# else:
# attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,
# scale=scale,num_tokens= self.num_tokens).to('cuda', dtype=self.precision)
# self.pipe.unet.set_attn_processor(attn_procs)
# state_dict = torch.load(model_path, map_location="cpu")
# self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
# ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
# ip_layers.load_state_dict(state_dict["ip_adapter"], strict=True)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.pipe.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.pipe.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
height // self.vae_scale_factor,
self.pipe.vocoder.config.model_in_dim // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.pipe.scheduler.init_noise_sigma
return latents
if __name__ == "__main__":
# pipeline = AudioLDMPipeline(
# sd_id="cvssp/audioldm-l-full", ip_id="cvssp/audioldm-l-full", NUM_DDIM_STEPS=50
# )
pipeline = TangoPipeline(
sd_id="declare-lab/tango",
ip_id="declare-lab/tango",
NUM_DDIM_STEPS=50,
precision=torch.float16,
)
print(pipeline.__dict__)