### ----------------- ### # Standard library imports import os import re import sys import copy import warnings warnings.filterwarnings("ignore", category=UserWarning) from typing import Optional import threading from transformers import TextIteratorStreamer # Third-party imports import numpy as np import torch import torch.distributed as dist import uvicorn import librosa import whisper import requests from fastapi import FastAPI from pydantic import BaseModel from decord import VideoReader, cpu from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import spaces import json from datetime import datetime import shutil # Local imports from egogpt.model.builder import load_pretrained_model from egogpt.mm_utils import get_model_name_from_path, process_images from egogpt.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, SPEECH_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN ) from egogpt.conversation import conv_templates, SeparatorStyle import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) from huggingface_hub import snapshot_download from huggingface_hub import hf_hub_download # Download the model checkpoint file (large-v3.pt) ego_gpt_path = hf_hub_download( repo_id="lmms-lab/EgoGPT-7b-Demo", filename="speech_encoder/large-v3.pt", local_dir="./", ) import shutil try: os.chmod("./", 0o777) shutil.move('./speech_encoder/large-v3.pt', '/large-v3.pt') except PermissionError as e: subprocess.run(['mv', './speech_encoder/large-v3.pt', './large-v3.pt']) pretrained = "lmms-lab/EgoGPT-7b-Demo" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device_map = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Add this initialization code before loading the model def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12377' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=world_size) setup(0,1) tokenizer, model, max_length = load_pretrained_model(pretrained,device_map=device_map) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device).eval() title_markdown = """
EgoLife

EgoLife

Towards Egocentric Life Assistant

Project Page | Github | Huggingface | Paper | Twitter (X)

EgoGPT

An Egocentric Video-Audio-Text Model
from EgoLife Project

""" notice_html = """

💡 Pro Tip: Try accessing this demo from your phone's browser. You can use your phone's camera to capture and analyze egocentric videos, making the experience more interactive and personal.

EgoGPT-7B is built upon LLaVA-OV and has been finetuned on the EgoIT dataset and a partially de-identified EgoLife dataset. Its primary goal is to serve as an egocentric captioner, supporting EgoRAG for EgoLifeQA tasks. Please note that due to inherent biases in the EgoLife dataset, the model may occasionally hallucinate details about people in custom videos based on patterns from the training data (for example, describing someone as "wearing a blue t-shirt" or "with pink hair"). We are actively working on improving the model to make it more universally applicable and will continue to release updates regularly. If you're interested in contributing to the development of future iterations of EgoGPT or the EgoLife project, we welcome you to reach out and contact us. (Contact us at jingkang001@e.ntu.edu.sg)

""" bibtext = """ ### Citation ``` @inproceedings{yang2025egolife, title={EgoLife: Towards Egocentric Life Assistant}, author={Yang, Jingkang and Liu, Shuai and Guo, Hongming and Dong, Yuhao and Zhang, Xiamengwei and Zhang, Sicheng and Wang, Pengyun and Zhou, Zitang and Xie, Binzhu and Wang, Ziyue and Ouyang, Bei and Lin, Zhengyu and Cominelli, Marco and Cai, Zhongang and Zhang, Yuanhan and Zhang, Peiyuan and Hong, Fangzhou and Widmer, Joerg and Gringoli, Francesco and Yang, Lei and Li, Bo and Liu, Ziwei}, booktitle={The IEEE/CVF Conference on Computer Vision and Pattern Recognition}, year={2025}, } ``` """ # cur_dir = os.path.dirname(os.path.abspath(__file__)) cur_dir = '.' # Add this after cur_dir definition UPLOADS_DIR = os.path.join(cur_dir, "user_uploads") os.makedirs(UPLOADS_DIR, exist_ok=True) def time_to_frame_idx(time_int: int, fps: int) -> int: """ Convert time in HHMMSSFF format (integer or string) to frame index. :param time_int: Time in HHMMSSFF format, e.g., 10483000 (10:48:30.00) or "10483000". :param fps: Frames per second of the video. :return: Frame index corresponding to the given time. """ # Ensure time_int is a string for slicing time_str = str(time_int).zfill( 8) # Pad with zeros if necessary to ensure it's 8 digits hours = int(time_str[:2]) minutes = int(time_str[2:4]) seconds = int(time_str[4:6]) frames = int(time_str[6:8]) total_seconds = hours * 3600 + minutes * 60 + seconds total_frames = total_seconds * fps + frames # Convert to total frames return total_frames def split_text(text, keywords): # 创建一个正则表达式模式,将所有关键词用 | 连接,并使用捕获组 pattern = '(' + '|'.join(map(re.escape, keywords)) + ')' # 使用 re.split 保留分隔符 parts = re.split(pattern, text) # 去除空字符串 parts = [part for part in parts if part] return parts warnings.filterwarnings("ignore") # Create FastAPI instance app = FastAPI() def load_video( video_path: Optional[str] = None, max_frames_num: int = 16, fps: int = 1, video_start_time: Optional[float] = None, start_time: Optional[float] = None, end_time: Optional[float] = None, time_based_processing: bool = False ) -> tuple: vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) target_sr = 16000 # Process video frames first if time_based_processing: # Initialize video reader vr = decord.VideoReader(video_path, ctx=decord.cpu(0), num_threads=1) total_frame_num = len(vr) video_fps = vr.get_avg_fps() # Convert time to frame index based on the actual video FPS video_start_frame = int(time_to_frame_idx(video_start_time, video_fps)) start_frame = int(time_to_frame_idx(start_time, video_fps)) end_frame = int(time_to_frame_idx(end_time, video_fps)) print("start frame", start_frame) print("end frame", end_frame) # Ensure the end time does not exceed the total frame number if end_frame - start_frame > total_frame_num: end_frame = total_frame_num + start_frame # Adjust start_frame and end_frame based on video start time start_frame -= video_start_frame end_frame -= video_start_frame start_frame = max(0, int(round(start_frame))) # 确保不会小于0 end_frame = min(total_frame_num, int(round(end_frame))) # 确保不会超过总帧数 start_frame = int(round(start_frame)) end_frame = int(round(end_frame)) # Sample frames based on the provided fps (e.g., 1 frame per second) frame_idx = [i for i in range(start_frame, end_frame) if (i - start_frame) % int(video_fps / fps) == 0] # Get the video frames for the sampled indices video = vr.get_batch(frame_idx).asnumpy() else: # Original video processing logic total_frame_num = len(vr) avg_fps = round(vr.get_avg_fps() / fps) frame_idx = [i for i in range(0, total_frame_num, avg_fps)] if max_frames_num > 0: if len(frame_idx) > max_frames_num: uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() video = vr.get_batch(frame_idx).asnumpy() # Try to load audio, return None for speech if failed try: if time_based_processing: y, _ = librosa.load(video_path, sr=target_sr) start_sample = int(start_time * target_sr) end_sample = int(end_time * target_sr) speech = y[start_sample:end_sample] else: speech, _ = librosa.load(video_path, sr=target_sr) # Process audio if it exists speech = whisper.pad_or_trim(speech.astype(np.float32)) speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0) speech_lengths = torch.LongTensor([speech.shape[0]]) return video, speech, speech_lengths, True # True indicates real audio except Exception as e: print(f"Warning: Could not load audio from video: {e}") # Create dummy silent audio duration = 10 # 10 seconds speech = np.zeros(duration * target_sr, dtype=np.float32) speech = whisper.pad_or_trim(speech) speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0) speech_lengths = torch.LongTensor([speech.shape[0]]) return video, speech, speech_lengths, False # False indicates no real audio class PromptRequest(BaseModel): prompt: str video_path: str = None max_frames_num: int = 16 fps: int = 1 video_start_time: float = None start_time: float = None end_time: float = None time_based_processing: bool = False # @spaces.GPU(duration=120) def save_interaction(video_path, prompt, output, audio_path=None): """Save user interaction data and files""" if not video_path: return # Create timestamped directory for this interaction timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") interaction_dir = os.path.join(UPLOADS_DIR, timestamp) os.makedirs(interaction_dir, exist_ok=True) # Copy video file video_ext = os.path.splitext(video_path)[1] new_video_path = os.path.join(interaction_dir, f"video{video_ext}") shutil.copy2(video_path, new_video_path) # Save metadata metadata = { "timestamp": timestamp, "prompt": prompt, "output": output, "video_path": new_video_path, } # Only try to save audio if it's a file path (str), not audio data (tuple) if audio_path and isinstance(audio_path, (str, bytes, os.PathLike)): audio_ext = os.path.splitext(audio_path)[1] new_audio_path = os.path.join(interaction_dir, f"audio{audio_ext}") shutil.copy2(audio_path, new_audio_path) metadata["audio_path"] = new_audio_path with open(os.path.join(interaction_dir, "metadata.json"), "w") as f: json.dump(metadata, f, indent=4) def extract_audio_from_video(video_path, audio_path=None): print('Processing audio from video...', video_path, audio_path) if video_path is None: return None if isinstance(video_path, dict) and 'name' in video_path: video_path = video_path['name'] try: y, sr = librosa.load(video_path, sr=8000, mono=True, res_type='kaiser_fast') # Check if the audio is silent if np.abs(y).mean() < 0.001: print("Video appears to be silent") return None return (sr, y) except Exception as e: print(f"Warning: Could not extract audio from video: {e}") return None import time @spaces.GPU def generate_text(video_path, audio_track, prompt): streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) max_frames_num = 30 fps = 1 conv_template = "qwen_1_5" if video_path is None and audio_track is None: question = prompt speech = None speech_lengths = None has_real_audio = False image = None image_sizes= None modalities = ["image"] image_tensor=None # Load video and potentially audio else: video, speech, speech_lengths, has_real_audio = load_video( video_path=video_path, max_frames_num=max_frames_num, fps=fps, ) # Prepare the prompt based on whether we have real audio if not has_real_audio: question = f"\n{prompt}" # Video-only prompt else: question = f"\n\n{prompt}" # Video + speech prompt speech = torch.stack([speech]).to("cuda").half() processor = model.get_vision_tower().image_processor processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"] image = [(processed_video, video[0].size, "video")] image_tensor = [image[0][0].half()] image_sizes = [image[0][1]] modalities = ["video"] conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() parts = split_text(prompt_question, ["", ""]) input_ids = [] for part in parts: if "" == part: input_ids += [IMAGE_TOKEN_INDEX] elif "" == part and speech is not None: # Only add speech token if we have audio input_ids += [SPEECH_TOKEN_INDEX] else: input_ids += tokenizer(part).input_ids input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0).to(device) generate_kwargs = {"eos_token_id": tokenizer.eos_token_id} def generate_response(): model.generate( input_ids, images=image_tensor, image_sizes=image_sizes, speech=speech, speech_lengths=speech_lengths, do_sample=False, temperature=0.7, max_new_tokens=512, repetition_penalty=1.2, modalities=modalities, streamer=streamer, **generate_kwargs ) # Start generation in a separate thread thread = threading.Thread(target=generate_response) thread.start() # Stream the output word by word generated_text = "" partial_word = "" cursor = "|" cursor_visible = True last_cursor_toggle = time.time() for new_text in streamer: partial_word += new_text # Toggle the cursor visibility every 0.5 seconds if time.time() - last_cursor_toggle > 0.5: cursor_visible = not cursor_visible last_cursor_toggle = time.time() current_cursor = cursor if cursor_visible else " " if partial_word.endswith(" ") or partial_word.endswith("\n"): generated_text += partial_word # Yield the current text with the cursor appended yield generated_text + current_cursor partial_word = "" else: # Yield the current text plus the partial word and the cursor yield generated_text + partial_word + current_cursor # Handle any remaining partial word at the end if partial_word: generated_text += partial_word yield generated_text # Save the interaction after generation is complete save_interaction(video_path, prompt, generated_text, audio_track) head = """ EgoGPT Demo - EgoLife """ with gr.Blocks(title="EgoGPT Demo - EgoLife", head=head) as demo: gr.HTML(title_markdown) gr.HTML(notice_html) with gr.Row(): with gr.Column(): video_input = gr.Video(label="Video", autoplay=True, loop=True, format="mp4", width=600, height=400, show_label=False, elem_id='video') # Make audio display conditionally visible audio_display = gr.Audio(label="Video Audio Track", autoplay=False, show_label=True, visible=True, interactive=False, elem_id="audio") text_input = gr.Textbox(label="Question", placeholder="Enter your message here...", value="Describe everything I saw, did, and heard, using the first perspective. Transcribe all the speech.") with gr.Column(): output_text = gr.Textbox(label="Response", lines=14, max_lines=14) gr.Examples( examples=[ [f"{cur_dir}/videos/cheers.mp4", f"{cur_dir}/videos/cheers.mp3", "Describe everything I saw, did, and heard from the first perspective."], [f"{cur_dir}/videos/DAY3_A6_SHURE_14550000.mp4", f"{cur_dir}/videos/DAY3_A6_SHURE_14550000.mp3", "请按照时间顺序描述我所见所为,并转录所有声音。"], [f"{cur_dir}/videos/shopping.mp4", f"{cur_dir}/videos/shopping.mp3", "Please only transcribe all the speech."], [f"{cur_dir}/videos/japan.mp4", f"{cur_dir}/videos/japan.mp3", "Describe everything I see, do, and hear from the first-person view."], ], inputs=[video_input, audio_display, text_input], outputs=[output_text] ) def handle_video_change(video): if video is None: return gr.update(visible=False), None audio = extract_audio_from_video(video) # Update audio display visibility based on whether we have audio return gr.update(visible=audio is not None), audio # Update the video input change event video_input.change( fn=handle_video_change, inputs=[video_input], outputs=[audio_display, audio_display] # First for visibility, second for audio data ) # Add clear handler def clear_outputs(video): if video is None: return gr.update(visible=False), "", None return gr.skip() video_input.clear( fn=clear_outputs, inputs=[video_input], outputs=[audio_display, output_text, audio_display] ) text_input.submit( fn=generate_text, inputs=[video_input, audio_display, text_input], outputs=[output_text], api_name="generate_streaming" ) # Add submit button and its event handler submit_btn = gr.Button("Submit") submit_btn.click( fn=generate_text, inputs=[video_input, audio_display, text_input], outputs=[output_text], api_name="generate_streaming" ) gr.Markdown(bibtext) # Launch the Gradio app if __name__ == "__main__": demo.launch(share=True)