Spaces:
Runtime error
Runtime error
| """ | |
| # Adapted from https://huggingface.co/MILVLG/imp-v1-3b/blob/main/vision_encoder.py | |
| """ | |
| import os | |
| from dataclasses import dataclass | |
| from functools import partial, reduce | |
| from typing import Dict, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from PIL import Image | |
| from torch import nn | |
| from transformers import PretrainedConfig | |
| from transformers.activations import ACT2FN | |
| from transformers.image_processing_utils import BatchFeature, get_size_dict | |
| from transformers.image_transforms import ( | |
| convert_to_rgb, | |
| normalize, | |
| rescale, | |
| resize, | |
| to_channel_dimension_format, | |
| ) | |
| from transformers.image_utils import ( | |
| ChannelDimension, | |
| PILImageResampling, | |
| to_numpy_array, | |
| ) | |
| from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ModelOutput | |
| from egogpt.utils import rank0_print | |
| class SigLipImageProcessor: | |
| def __init__( | |
| self, | |
| image_mean=(0.5, 0.5, 0.5), | |
| image_std=(0.5, 0.5, 0.5), | |
| size=(384, 384), | |
| crop_size: Dict[str, int] = None, | |
| resample=PILImageResampling.BICUBIC, | |
| rescale_factor=1 / 255, | |
| data_format=ChannelDimension.FIRST, | |
| ): | |
| crop_size = ( | |
| crop_size if crop_size is not None else {"height": 384, "width": 384} | |
| ) | |
| crop_size = get_size_dict( | |
| crop_size, default_to_square=True, param_name="crop_size" | |
| ) | |
| self.image_mean = image_mean | |
| self.image_std = image_std | |
| self.size = size | |
| self.resample = resample | |
| self.rescale_factor = rescale_factor | |
| self.data_format = data_format | |
| self.crop_size = crop_size | |
| def preprocess(self, images, return_tensors): | |
| if isinstance(images, Image.Image): | |
| images = [images] | |
| else: | |
| # to adapt video data | |
| images = [to_numpy_array(image) for image in images] | |
| assert isinstance(images, list) | |
| transforms = [ | |
| convert_to_rgb, | |
| to_numpy_array, | |
| partial( | |
| resize, | |
| size=self.size, | |
| resample=self.resample, | |
| data_format=self.data_format, | |
| ), | |
| partial(rescale, scale=self.rescale_factor, data_format=self.data_format), | |
| partial( | |
| normalize, | |
| mean=self.image_mean, | |
| std=self.image_std, | |
| data_format=self.data_format, | |
| ), | |
| partial( | |
| to_channel_dimension_format, | |
| channel_dim=self.data_format, | |
| input_channel_dim=self.data_format, | |
| ), | |
| ] | |
| images = reduce(lambda x, f: [*map(f, x)], transforms, images) | |
| data = {"pixel_values": images} | |
| return BatchFeature(data=data, tensor_type=return_tensors) | |
| class SigLipVisionConfig(PretrainedConfig): | |
| model_type = "siglip_vision_model" | |
| def __init__( | |
| self, | |
| hidden_size=1152, | |
| image_mean=(0.5, 0.5, 0.5), | |
| intermediate_size=4304, | |
| num_hidden_layers=27, | |
| num_attention_heads=16, | |
| num_channels=3, | |
| image_size=384, | |
| patch_size=14, | |
| hidden_act="gelu_pytorch_tanh", | |
| layer_norm_eps=1e-6, | |
| attention_dropout=0.0, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.image_mean = image_mean | |
| def from_pretrained( | |
| cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
| ) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict( | |
| pretrained_model_name_or_path, **kwargs | |
| ) | |
| # get the vision config dict if we are loading from SigLipConfig | |
| if config_dict.get("model_type") == "siglip": | |
| config_dict = config_dict["vision_config"] | |
| if ( | |
| "model_type" in config_dict | |
| and hasattr(cls, "model_type") | |
| and config_dict["model_type"] != cls.model_type | |
| ): | |
| print( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->SigLip | |
| class SigLipVisionModelOutput(ModelOutput): | |
| """ | |
| Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | |
| Args: | |
| image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The image embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| image_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| class SigLipVisionEmbeddings(nn.Module): | |
| def __init__(self, config: SigLipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.patch_embedding = nn.Conv2d( | |
| in_channels=config.num_channels, | |
| out_channels=self.embed_dim, | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| padding="valid", | |
| ) | |
| self.num_patches = (self.image_size // self.patch_size) ** 2 | |
| self.num_positions = self.num_patches | |
| self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
| self.register_buffer( | |
| "position_ids", | |
| torch.arange(self.num_positions).expand((1, -1)), | |
| persistent=False, | |
| ) | |
| def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
| patch_embeds = self.patch_embedding( | |
| pixel_values | |
| ) # shape = [*, width, grid, grid] | |
| embeddings = patch_embeds.flatten(2).transpose(1, 2) | |
| embeddings = embeddings + self.position_embedding(self.position_ids) | |
| return embeddings | |
| class SigLipAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale = self.head_dim**-0.5 | |
| self.dropout = config.attention_dropout | |
| self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| batch_size, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view( | |
| batch_size, q_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| key_states = key_states.view( | |
| batch_size, q_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| value_states = value_states.view( | |
| batch_size, q_len, self.num_heads, self.head_dim | |
| ).transpose(1, 2) | |
| k_v_seq_len = key_states.shape[-2] | |
| attn_weights = ( | |
| torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
| ) | |
| if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights + attention_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax( | |
| attn_weights, dim=-1, dtype=torch.float32 | |
| ).to(query_states.dtype) | |
| attn_weights = nn.functional.dropout( | |
| attn_weights, p=self.dropout, training=self.training | |
| ) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights | |
| # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->SigLip | |
| class SigLipMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.activation_fn = ACT2FN[config.hidden_act] | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->SigLip | |
| class SigLipEncoderLayer(nn.Module): | |
| def __init__(self, config: SigLipVisionConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = SigLipAttention(config) | |
| self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.mlp = SigLipMLP(config) | |
| self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| # Ignore copy | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): | |
| Input to the layer of shape `(batch, seq_len, embed_dim)`. | |
| attention_mask (`torch.FloatTensor`): | |
| Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | |
| output_attentions (`bool`, *optional*, defaults to `False`): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.layer_norm1(hidden_states) | |
| hidden_states, attn_weights = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = residual + hidden_states | |
| residual = hidden_states | |
| hidden_states = self.layer_norm2(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| class SigLipPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = SigLipVisionConfig | |
| base_model_prefix = "siglip" | |
| supports_gradient_checkpointing = True | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| pass | |
| # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->SigLip | |
| class SigLipEncoder(nn.Module): | |
| """ | |
| Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
| [`SigLipEncoderLayer`]. | |
| Args: | |
| config: SigLipVisionConfig | |
| """ | |
| def __init__(self, config: SigLipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList( | |
| [SigLipEncoderLayer(config) for _ in range(config.num_hidden_layers)] | |
| ) | |
| self.gradient_checkpointing = False | |
| # Ignore copy | |
| def forward( | |
| self, | |
| inputs_embeds, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| hidden_states = inputs_embeds | |
| for encoder_layer in self.layers: | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| encoder_layer.__call__, | |
| hidden_states, | |
| attention_mask, | |
| output_attentions, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, encoder_states, all_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=encoder_states, | |
| attentions=all_attentions, | |
| ) | |
| class SigLipVisionTransformer(nn.Module): | |
| def __init__(self, config: SigLipVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = SigLipVisionEmbeddings(config) | |
| self.encoder = SigLipEncoder(config) | |
| self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| self.head = SigLipMultiheadAttentionPoolingHead(config) | |
| def forward( | |
| self, | |
| pixel_values, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| hidden_states = self.embeddings(pixel_values) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.post_layernorm(last_hidden_state) | |
| pooled_output = self.head(last_hidden_state) | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class SigLipMultiheadAttentionPoolingHead(nn.Module): | |
| """Multihead Attention Pooling.""" | |
| def __init__(self, config: SigLipVisionConfig): | |
| super().__init__() | |
| self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
| self.attention = torch.nn.MultiheadAttention( | |
| config.hidden_size, config.num_attention_heads, batch_first=True | |
| ) | |
| self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.mlp = SigLipMLP(config) | |
| def forward(self, hidden_state): | |
| batch_size = hidden_state.shape[0] | |
| probe = self.probe.repeat(batch_size, 1, 1) | |
| hidden_state = self.attention(probe, hidden_state, hidden_state)[0] | |
| residual = hidden_state | |
| hidden_state = self.layernorm(hidden_state) | |
| hidden_state = residual + self.mlp(hidden_state) | |
| return hidden_state[:, 0] | |
| class SigLipVisionModel(SigLipPreTrainedModel): | |
| config_class = SigLipVisionConfig | |
| main_input_name = "pixel_values" | |
| _no_split_modules = ["SigLipEncoderLayer"] | |
| def __init__(self, config: SigLipVisionConfig): | |
| super().__init__(config) | |
| self.vision_model = SigLipVisionTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| pixel_values, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, SigLipVisionModel | |
| >>> model = SigLipVisionModel.from_pretrained("google/siglip-base-patch16-224") | |
| >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| >>> pooled_output = outputs.pooler_output # pooled features | |
| ```""" | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| return self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| class SigLipVisionTower(nn.Module): | |
| def __init__(self, vision_tower, vision_tower_cfg, delay_load=False): | |
| super().__init__() | |
| self.is_loaded = False | |
| self.config = SigLipVisionConfig() | |
| self.vision_tower_name = vision_tower | |
| self.image_processor = SigLipImageProcessor() | |
| if not delay_load: | |
| rank0_print(f"Loading vision tower: {vision_tower}") | |
| self.load_model() | |
| elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False): | |
| # TODO: better detector is needed. | |
| rank0_print( | |
| f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True." | |
| ) | |
| self.load_model() | |
| elif ( | |
| hasattr(vision_tower_cfg, "mm_tunable_parts") | |
| and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts | |
| ): | |
| rank0_print( | |
| f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`." | |
| ) | |
| self.load_model() | |
| else: | |
| self.cfg_only = self.config | |
| def load_model(self, device_map=None): | |
| if self.is_loaded: | |
| rank0_print( | |
| "{} is already loaded, `load_model` called again, skipping.".format( | |
| self.vision_tower_name | |
| ) | |
| ) | |
| return | |
| self.vision_tower = SigLipVisionModel.from_pretrained( | |
| self.vision_tower_name, device_map=device_map | |
| ) | |
| del self.vision_tower.vision_model.encoder.layers[-1:] | |
| self.vision_tower.vision_model.head = nn.Identity() | |
| self.vision_tower.requires_grad_(False) | |
| self.is_loaded = True | |
| def forward(self, images): | |
| if type(images) is list: | |
| image_features = [] | |
| for image in images: | |
| image_forward_out = self.vision_tower( | |
| image.to(device=self.device, dtype=self.dtype).unsqueeze(0), | |
| output_hidden_states=True, | |
| ) | |
| image_feature = image_forward_out.hidden_states[-1].to(image.dtype) | |
| assert image_features.shape[-2] == 729 | |
| image_features.append(image_feature) | |
| else: | |
| image_forward_outs = self.vision_tower( | |
| images.to(device=self.device, dtype=self.dtype), | |
| output_hidden_states=True, | |
| ) | |
| image_features = image_forward_outs.hidden_states[-1].to(images.dtype) | |
| assert image_features.shape[-2] == 729 | |
| return image_features | |
| def dummy_feature(self): | |
| return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
| def dtype(self): | |
| for p in self.vision_tower.parameters(): | |
| return p.dtype | |
| def device(self): | |
| for p in self.vision_tower.parameters(): | |
| return p.device | |
| def hidden_size(self): | |
| return self.config.hidden_size | |
| def num_patches(self): | |
| return (self.config.image_size // self.config.patch_size) ** 2 | |
| def num_patches_per_side(self): | |
| return self.config.image_size // self.config.patch_size | |
| # return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"] | |
| def image_size(self): | |
| return self.config.image_size | |