EgoGPT-7B / app.py
Jingkang's picture
Update app.py
4cd34db verified
### ----------------- ###
# Standard library imports
import os
import re
import sys
import copy
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
from typing import Optional
import threading
from transformers import TextIteratorStreamer
# Third-party imports
import numpy as np
import torch
import torch.distributed as dist
import uvicorn
import librosa
import whisper
import requests
from fastapi import FastAPI
from pydantic import BaseModel
from decord import VideoReader, cpu
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
import json
from datetime import datetime
import shutil
# Local imports
from egogpt.model.builder import load_pretrained_model
from egogpt.mm_utils import get_model_name_from_path, process_images
from egogpt.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
IGNORE_INDEX,
SPEECH_TOKEN_INDEX,
DEFAULT_SPEECH_TOKEN
)
from egogpt.conversation import conv_templates, SeparatorStyle
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from huggingface_hub import snapshot_download
from huggingface_hub import hf_hub_download
# Download the model checkpoint file (large-v3.pt)
ego_gpt_path = hf_hub_download(
repo_id="lmms-lab/EgoGPT-7b-Demo",
filename="speech_encoder/large-v3.pt",
local_dir="./",
)
import shutil
try:
os.chmod("./", 0o777)
shutil.move('./speech_encoder/large-v3.pt', '/large-v3.pt')
except PermissionError as e:
subprocess.run(['mv', './speech_encoder/large-v3.pt', './large-v3.pt'])
pretrained = "lmms-lab/EgoGPT-7b-Demo"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device_map = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Add this initialization code before loading the model
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12377'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
setup(0,1)
tokenizer, model, max_length = load_pretrained_model(pretrained,device_map=device_map)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device).eval()
title_markdown = """
<div style="display: flex; justify-content: space-between; align-items: center; background: linear-gradient(90deg, rgba(72,219,251,0.1), rgba(29,209,161,0.1)); border-radius: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); padding: 20px; margin-bottom: 20px;">
<div style="display: flex; align-items: center;">
<a href="https://egolife-ntu.github.io/" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://egolife-ai.github.io/egolife.png" alt="EgoLife" style="max-width: 100px; height: auto; border-radius: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
</a>
<div>
<h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoLife</h1>
<h2 style="margin: 10px 0; color: #2d3436; font-weight: 500;">Towards Egocentric Life Assistant</h2>
<div style="display: flex; gap: 15px; margin-top: 10px;">
<a href="https://egolife-ai.github.io/" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Project Page</a> |
<a href="https://github.com/EvolvingLMMs-Lab/EgoLife" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Github</a> |
<a href="https://huggingface.co/collections/lmms-lab/egolife-67c04574c2a9b64ab312c342" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Huggingface</a> |
<a href="https://huggingface.co/papers/2503.03803" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Paper</a> |
<a href="https://x.com/JingkangY/status/1896434372896784432" style="text-decoration: none; color: #48dbfb; font-weight: 500; transition: color 0.3s;">Twitter (X)</a>
</div>
</div>
</div>
<div style="text-align: right; margin-left: 20px;">
<h1 style="margin: 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">EgoGPT</h1>
<h2 style="margin: 10px 0; background: linear-gradient(90deg, #48dbfb, #1dd1a1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.8em; font-weight: 600;">An Egocentric Video-Audio-Text Model<br>from EgoLife Project</h2>
</div>
</div>
"""
notice_html = """
<div style="background-color: #f9f9f9; border-left: 5px solid #48dbfb; padding: 20px; margin-top: 20px; border-radius: 10px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);">
<p style="font-size: 1.1em; color: #ff9933; margin-bottom: 10px; font-weight: bold;">💡 Pro Tip: Try accessing this demo from your phone's browser. You can use your phone's camera to capture and analyze egocentric videos, making the experience more interactive and personal.</p>
<p style="font-size: 1.1em; color: #555; margin-bottom: 10px;">EgoGPT-7B is built upon LLaVA-OV and has been finetuned on the EgoIT dataset and a partially de-identified EgoLife dataset. Its primary goal is to serve as an egocentric captioner, supporting EgoRAG for EgoLifeQA tasks. Please note that due to inherent biases in the EgoLife dataset, the model may occasionally hallucinate details about people in custom videos based on patterns from the training data (for example, describing someone as "wearing a blue t-shirt" or "with pink hair"). We are actively working on improving the model to make it more universally applicable and will continue to release updates regularly. If you're interested in contributing to the development of future iterations of EgoGPT or the EgoLife project, we welcome you to reach out and contact us. (Contact us at <a href="mailto:[email protected]">[email protected]</a>)</p>
</div>
"""
bibtext = """
### Citation
```
@inproceedings{yang2025egolife,
title={EgoLife: Towards Egocentric Life Assistant},
author={Yang, Jingkang and Liu, Shuai and Guo, Hongming and Dong, Yuhao and Zhang, Xiamengwei and Zhang, Sicheng and Wang, Pengyun and Zhou, Zitang and Xie, Binzhu and Wang, Ziyue and Ouyang, Bei and Lin, Zhengyu and Cominelli, Marco and Cai, Zhongang and Zhang, Yuanhan and Zhang, Peiyuan and Hong, Fangzhou and Widmer, Joerg and Gringoli, Francesco and Yang, Lei and Li, Bo and Liu, Ziwei},
booktitle={The IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2025},
}
```
"""
# cur_dir = os.path.dirname(os.path.abspath(__file__))
cur_dir = '.'
# Add this after cur_dir definition
UPLOADS_DIR = os.path.join(cur_dir, "user_uploads")
os.makedirs(UPLOADS_DIR, exist_ok=True)
def time_to_frame_idx(time_int: int, fps: int) -> int:
"""
Convert time in HHMMSSFF format (integer or string) to frame index.
:param time_int: Time in HHMMSSFF format, e.g., 10483000 (10:48:30.00) or "10483000".
:param fps: Frames per second of the video.
:return: Frame index corresponding to the given time.
"""
# Ensure time_int is a string for slicing
time_str = str(time_int).zfill(
8) # Pad with zeros if necessary to ensure it's 8 digits
hours = int(time_str[:2])
minutes = int(time_str[2:4])
seconds = int(time_str[4:6])
frames = int(time_str[6:8])
total_seconds = hours * 3600 + minutes * 60 + seconds
total_frames = total_seconds * fps + frames # Convert to total frames
return total_frames
def split_text(text, keywords):
# 创建一个正则表达式模式,将所有关键词用 | 连接,并使用捕获组
pattern = '(' + '|'.join(map(re.escape, keywords)) + ')'
# 使用 re.split 保留分隔符
parts = re.split(pattern, text)
# 去除空字符串
parts = [part for part in parts if part]
return parts
warnings.filterwarnings("ignore")
# Create FastAPI instance
app = FastAPI()
def load_video(
video_path: Optional[str] = None,
max_frames_num: int = 16,
fps: int = 1,
video_start_time: Optional[float] = None,
start_time: Optional[float] = None,
end_time: Optional[float] = None,
time_based_processing: bool = False
) -> tuple:
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
target_sr = 16000
# Process video frames first
if time_based_processing:
# Initialize video reader
vr = decord.VideoReader(video_path, ctx=decord.cpu(0), num_threads=1)
total_frame_num = len(vr)
video_fps = vr.get_avg_fps()
# Convert time to frame index based on the actual video FPS
video_start_frame = int(time_to_frame_idx(video_start_time, video_fps))
start_frame = int(time_to_frame_idx(start_time, video_fps))
end_frame = int(time_to_frame_idx(end_time, video_fps))
print("start frame", start_frame)
print("end frame", end_frame)
# Ensure the end time does not exceed the total frame number
if end_frame - start_frame > total_frame_num:
end_frame = total_frame_num + start_frame
# Adjust start_frame and end_frame based on video start time
start_frame -= video_start_frame
end_frame -= video_start_frame
start_frame = max(0, int(round(start_frame))) # 确保不会小于0
end_frame = min(total_frame_num, int(round(end_frame))) # 确保不会超过总帧数
start_frame = int(round(start_frame))
end_frame = int(round(end_frame))
# Sample frames based on the provided fps (e.g., 1 frame per second)
frame_idx = [i for i in range(start_frame, end_frame) if (i - start_frame) % int(video_fps / fps) == 0]
# Get the video frames for the sampled indices
video = vr.get_batch(frame_idx).asnumpy()
else:
# Original video processing logic
total_frame_num = len(vr)
avg_fps = round(vr.get_avg_fps() / fps)
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
if max_frames_num > 0:
if len(frame_idx) > max_frames_num:
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
video = vr.get_batch(frame_idx).asnumpy()
# Try to load audio, return None for speech if failed
try:
if time_based_processing:
y, _ = librosa.load(video_path, sr=target_sr)
start_sample = int(start_time * target_sr)
end_sample = int(end_time * target_sr)
speech = y[start_sample:end_sample]
else:
speech, _ = librosa.load(video_path, sr=target_sr)
# Process audio if it exists
speech = whisper.pad_or_trim(speech.astype(np.float32))
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0)
speech_lengths = torch.LongTensor([speech.shape[0]])
return video, speech, speech_lengths, True # True indicates real audio
except Exception as e:
print(f"Warning: Could not load audio from video: {e}")
# Create dummy silent audio
duration = 10 # 10 seconds
speech = np.zeros(duration * target_sr, dtype=np.float32)
speech = whisper.pad_or_trim(speech)
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0)
speech_lengths = torch.LongTensor([speech.shape[0]])
return video, speech, speech_lengths, False # False indicates no real audio
class PromptRequest(BaseModel):
prompt: str
video_path: str = None
max_frames_num: int = 16
fps: int = 1
video_start_time: float = None
start_time: float = None
end_time: float = None
time_based_processing: bool = False
# @spaces.GPU(duration=120)
def save_interaction(video_path, prompt, output, audio_path=None):
"""Save user interaction data and files"""
if not video_path:
return
# Create timestamped directory for this interaction
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
interaction_dir = os.path.join(UPLOADS_DIR, timestamp)
os.makedirs(interaction_dir, exist_ok=True)
# Copy video file
video_ext = os.path.splitext(video_path)[1]
new_video_path = os.path.join(interaction_dir, f"video{video_ext}")
shutil.copy2(video_path, new_video_path)
# Save metadata
metadata = {
"timestamp": timestamp,
"prompt": prompt,
"output": output,
"video_path": new_video_path,
}
# Only try to save audio if it's a file path (str), not audio data (tuple)
if audio_path and isinstance(audio_path, (str, bytes, os.PathLike)):
audio_ext = os.path.splitext(audio_path)[1]
new_audio_path = os.path.join(interaction_dir, f"audio{audio_ext}")
shutil.copy2(audio_path, new_audio_path)
metadata["audio_path"] = new_audio_path
with open(os.path.join(interaction_dir, "metadata.json"), "w") as f:
json.dump(metadata, f, indent=4)
def extract_audio_from_video(video_path, audio_path=None):
print('Processing audio from video...', video_path, audio_path)
if video_path is None:
return None
if isinstance(video_path, dict) and 'name' in video_path:
video_path = video_path['name']
try:
y, sr = librosa.load(video_path, sr=8000, mono=True, res_type='kaiser_fast')
# Check if the audio is silent
if np.abs(y).mean() < 0.001:
print("Video appears to be silent")
return None
return (sr, y)
except Exception as e:
print(f"Warning: Could not extract audio from video: {e}")
return None
import time
@spaces.GPU
def generate_text(video_path, audio_track, prompt):
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
max_frames_num = 30
fps = 1
conv_template = "qwen_1_5"
if video_path is None and audio_track is None:
question = prompt
speech = None
speech_lengths = None
has_real_audio = False
image = None
image_sizes= None
modalities = ["image"]
image_tensor=None
# Load video and potentially audio
else:
video, speech, speech_lengths, has_real_audio = load_video(
video_path=video_path,
max_frames_num=max_frames_num,
fps=fps,
)
# Prepare the prompt based on whether we have real audio
if not has_real_audio:
question = f"<image>\n{prompt}" # Video-only prompt
else:
question = f"<speech>\n<image>\n{prompt}" # Video + speech prompt
speech = torch.stack([speech]).to("cuda").half()
processor = model.get_vision_tower().image_processor
processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"]
image = [(processed_video, video[0].size, "video")]
image_tensor = [image[0][0].half()]
image_sizes = [image[0][1]]
modalities = ["video"]
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
parts = split_text(prompt_question, ["<image>", "<speech>"])
input_ids = []
for part in parts:
if "<image>" == part:
input_ids += [IMAGE_TOKEN_INDEX]
elif "<speech>" == part and speech is not None: # Only add speech token if we have audio
input_ids += [SPEECH_TOKEN_INDEX]
else:
input_ids += tokenizer(part).input_ids
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0).to(device)
generate_kwargs = {"eos_token_id": tokenizer.eos_token_id}
def generate_response():
model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
speech=speech,
speech_lengths=speech_lengths,
do_sample=False,
temperature=0.7,
max_new_tokens=512,
repetition_penalty=1.2,
modalities=modalities,
streamer=streamer,
**generate_kwargs
)
# Start generation in a separate thread
thread = threading.Thread(target=generate_response)
thread.start()
# Stream the output word by word
generated_text = ""
partial_word = ""
cursor = "|"
cursor_visible = True
last_cursor_toggle = time.time()
for new_text in streamer:
partial_word += new_text
# Toggle the cursor visibility every 0.5 seconds
if time.time() - last_cursor_toggle > 0.5:
cursor_visible = not cursor_visible
last_cursor_toggle = time.time()
current_cursor = cursor if cursor_visible else " "
if partial_word.endswith(" ") or partial_word.endswith("\n"):
generated_text += partial_word
# Yield the current text with the cursor appended
yield generated_text + current_cursor
partial_word = ""
else:
# Yield the current text plus the partial word and the cursor
yield generated_text + partial_word + current_cursor
# Handle any remaining partial word at the end
if partial_word:
generated_text += partial_word
yield generated_text
# Save the interaction after generation is complete
save_interaction(video_path, prompt, generated_text, audio_track)
head = """
<head>
<title>EgoGPT Demo - EgoLife</title>
<link rel="icon" type="image/x-icon" href="./egolife_circle.ico">
</head>
<style>
/* Submit按钮默认和悬停效果 */
button.lg.secondary.svelte-1gz44hr {
background-color: #ff9933 !important;
transition: background-color 0.3s ease !important;
}
button.lg.secondary.svelte-1gz44hr:hover {
background-color: #ff7777 !important; /* 悬停时颜色加深 */
}
/* 确保按钮文字始终清晰可见 */
button.lg.secondary.svelte-1gz44hr span {
color: white !important;
}
/* 隐藏表头中的第二列 */
.table-wrap .svelte-p5q82i th:nth-child(2) {
display: none;
}
/* 隐藏表格内容中的第二列 */
.table-wrap .svelte-p5q82i td:nth-child(2) {
display: none;
}
.table-wrap {
max-height: 300px;
overflow-y: auto;
}
</style>
<script>
function initializeControls() {
const video = document.querySelector('[data-testid="Video-player"]');
const waveform = document.getElementById('waveform');
// 如果元素还没准备好,直接返回
if (!video || !waveform) {
return;
}
// 尝试获取音频元素
const audio = waveform.querySelector('div')?.shadowRoot?.querySelector('audio');
if (!audio) {
return;
}
console.log('Elements found:', { video, audio });
// 监听视频播放进度
video.addEventListener("play", () => {
if (audio.paused) {
audio.play(); // 如果音频暂停,开始播放
}
});
// 监听音频播放进度
audio.addEventListener("play", () => {
if (video.paused) {
video.play(); // 如果视频暂停,开始播放
}
});
// 同步视频和音频的播放进度
video.addEventListener("timeupdate", () => {
if (Math.abs(video.currentTime - audio.currentTime) > 0.1) {
audio.currentTime = video.currentTime; // 如果时间差超过0.1秒,同步
}
});
audio.addEventListener("timeupdate", () => {
if (Math.abs(audio.currentTime - video.currentTime) > 0.1) {
video.currentTime = audio.currentTime; // 如果时间差超过0.1秒,同步
}
});
// 监听暂停事件,确保视频和音频都暂停
video.addEventListener("pause", () => {
if (!audio.paused) {
audio.pause(); // 如果音频未暂停,暂停音频
}
});
audio.addEventListener("pause", () => {
if (!video.paused) {
video.pause(); // 如果视频未暂停,暂停视频
}
});
}
// 创建观察器监听DOM变化
const observer = new MutationObserver((mutations) => {
for (const mutation of mutations) {
if (mutation.addedNodes.length) {
// 当有新节点添加时,尝试初始化
const waveform = document.getElementById('waveform');
if (waveform?.querySelector('div')?.shadowRoot?.querySelector('audio')) {
console.log('Audio element detected');
initializeControls();
// 可选:如果不需要继续监听,可以断开观察器
// observer.disconnect();
}
}
}
});
// 开始观察
observer.observe(document.body, {
childList: true,
subtree: true
});
// 页面加载完成时也尝试初始化
document.addEventListener('DOMContentLoaded', () => {
console.log('DOM Content Loaded');
initializeControls();
// Ensure title and favicon are set correctly
document.title = "EgoGPT Demo - EgoLife";
// Create/update favicon link
let link = document.querySelector("link[rel~='icon']");
if (!link) {
link = document.createElement('link');
link.rel = 'icon';
document.head.appendChild(link);
}
link.href = './egolife_circle.ico';
});
</script>
"""
with gr.Blocks(title="EgoGPT Demo - EgoLife", head=head) as demo:
gr.HTML(title_markdown)
gr.HTML(notice_html)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video", autoplay=True, loop=True, format="mp4", width=600, height=400, show_label=False, elem_id='video')
# Make audio display conditionally visible
audio_display = gr.Audio(label="Video Audio Track", autoplay=False, show_label=True, visible=True, interactive=False, elem_id="audio")
text_input = gr.Textbox(label="Question", placeholder="Enter your message here...", value="Describe everything I saw, did, and heard, using the first perspective. Transcribe all the speech.")
with gr.Column():
output_text = gr.Textbox(label="Response", lines=14, max_lines=14)
gr.Examples(
examples=[
[f"{cur_dir}/videos/cheers.mp4", f"{cur_dir}/videos/cheers.mp3", "Describe everything I saw, did, and heard from the first perspective."],
[f"{cur_dir}/videos/DAY3_A6_SHURE_14550000.mp4", f"{cur_dir}/videos/DAY3_A6_SHURE_14550000.mp3", "请按照时间顺序描述我所见所为,并转录所有声音。"],
[f"{cur_dir}/videos/shopping.mp4", f"{cur_dir}/videos/shopping.mp3", "Please only transcribe all the speech."],
[f"{cur_dir}/videos/japan.mp4", f"{cur_dir}/videos/japan.mp3", "Describe everything I see, do, and hear from the first-person view."],
],
inputs=[video_input, audio_display, text_input],
outputs=[output_text]
)
def handle_video_change(video):
if video is None:
return gr.update(visible=False), None
audio = extract_audio_from_video(video)
# Update audio display visibility based on whether we have audio
return gr.update(visible=audio is not None), audio
# Update the video input change event
video_input.change(
fn=handle_video_change,
inputs=[video_input],
outputs=[audio_display, audio_display] # First for visibility, second for audio data
)
# Add clear handler
def clear_outputs(video):
if video is None:
return gr.update(visible=False), "", None
return gr.skip()
video_input.clear(
fn=clear_outputs,
inputs=[video_input],
outputs=[audio_display, output_text, audio_display]
)
text_input.submit(
fn=generate_text,
inputs=[video_input, audio_display, text_input],
outputs=[output_text],
api_name="generate_streaming"
)
# Add submit button and its event handler
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=generate_text,
inputs=[video_input, audio_display, text_input],
outputs=[output_text],
api_name="generate_streaming"
)
gr.Markdown(bibtext)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch(share=True)