Jimmyzheng-10's picture
Add app.py and the screencoder repo
a383d0e
raw
history blame
11.3 kB
import os
import time
from openai import OpenAI
from volcenginesdkarkruntime import Ark
import base64
import io
from PIL import Image, ImageDraw
import cv2
import numpy as np
def encode_image(image):
if type(image) == str:
try:
with open(image, "rb") as image_file:
encoding = base64.b64encode(image_file.read()).decode('utf-8')
except Exception as e:
print(e)
with open(image, "r", encoding="utf-8") as image_file:
encoding = base64.b64encode(image_file.read()).decode('utf-8')
return encoding
else:
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def image_mask(image_path: str, bbox_normalized: tuple[int, int, int, int]) -> Image.Image:
"""Creates a mask on the image in the specified normalized bounding box."""
image = Image.open(image_path)
masked_image = image.copy()
w, h = image.size
# Convert normalized coordinates to pixel coordinates for drawing
bbox_pixels = (
int(bbox_normalized[0] * w / 1000),
int(bbox_normalized[1] * h / 1000),
int(bbox_normalized[2] * w / 1000),
int(bbox_normalized[3] * h / 1000)
)
draw = ImageDraw.Draw(masked_image)
draw.rectangle(bbox_pixels, fill=(255, 255, 255)) # Pure white
return masked_image
def projection_analysis(image_path: str, bbox_normalized: tuple[int, int, int, int]) -> dict:
"""
Performs projection analysis on a specified normalized bounding box area.
All returned coordinates are also normalized.
"""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to read image {image_path}")
return {}
h, w = image.shape[:2]
# Convert normalized bbox to pixel coordinates for cropping
bbox_pixels = (
int(bbox_normalized[0] * w / 1000),
int(bbox_normalized[1] * h / 1000),
int(bbox_normalized[2] * w / 1000),
int(bbox_normalized[3] * h / 1000)
)
x1, y1, x2, y2 = bbox_pixels
roi = image[y1:y2, x1:x2]
if roi.size == 0:
print(f"Error: Invalid bbox region {bbox_pixels}")
return {}
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# Perform projection analysis (this part operates on pixels within the ROI)
horizontal_projection = np.sum(binary, axis=1)
vertical_projection = np.sum(binary, axis=0)
# Find groups and convert their coordinates back to normalized space
horizontal_groups = _find_groups_and_normalize(horizontal_projection, 'horizontal', bbox_normalized, w, h)
vertical_groups = _find_groups_and_normalize(vertical_projection, 'vertical', bbox_normalized, w, h)
return {
'horizontal_groups': horizontal_groups,
'vertical_groups': vertical_groups,
'bbox_normalized': bbox_normalized,
}
def _find_groups_and_normalize(projection: np.ndarray, direction: str,
bbox_normalized: tuple[int, int, int, int],
image_width: int, image_height: int,
min_group_size_px: int = 5, threshold_ratio: float = 0.1) -> list:
"""
Finds contiguous groups from projection data and returns them in normalized coordinates.
"""
threshold = np.max(projection) * threshold_ratio
non_zero_indices = np.where(projection > threshold)[0]
if len(non_zero_indices) == 0:
return []
groups_px = []
start_px = non_zero_indices[0]
for i in range(1, len(non_zero_indices)):
if non_zero_indices[i] > non_zero_indices[i-1] + 1:
if non_zero_indices[i-1] - start_px >= min_group_size_px:
groups_px.append((start_px, non_zero_indices[i-1]))
start_px = non_zero_indices[i]
if non_zero_indices[-1] - start_px >= min_group_size_px:
groups_px.append((start_px, non_zero_indices[-1]))
# Convert pixel groups (relative to ROI) to normalized coordinates (relative to full image)
norm_groups = []
roi_x1_norm, roi_y1_norm, roi_x2_norm, roi_y2_norm = bbox_normalized
roi_w_norm = roi_x2_norm - roi_x1_norm
roi_h_norm = roi_y2_norm - roi_y1_norm
roi_w_px = int(roi_w_norm * image_width / 1000)
roi_h_px = int(roi_h_norm * image_height / 1000)
for start_px, end_px in groups_px:
if direction == 'horizontal':
start_norm = roi_y1_norm + int(start_px * roi_h_norm / roi_h_px)
end_norm = roi_y1_norm + int(end_px * roi_h_norm / roi_h_px)
norm_groups.append((roi_x1_norm, roi_x2_norm, start_norm, end_norm))
else: # vertical
start_norm = roi_x1_norm + int(start_px * roi_w_norm / roi_w_px)
end_norm = roi_x1_norm + int(end_px * roi_w_norm / roi_w_px)
norm_groups.append((start_norm, end_norm, roi_y1_norm, roi_y2_norm))
return norm_groups
def visualize_projection_analysis(image_path: str, analysis_result: dict,
save_path: str = None) -> str:
"""
Visualizes the results of a completed projection analysis.
This function takes the analysis result dictionary and draws it on the image.
"""
if not analysis_result:
print("Error: Analysis result is empty.")
return ""
image = cv2.imread(image_path)
if image is None:
print(f"Error: Failed to read image for visualization: {image_path}")
return ""
h, w = image.shape[:2]
vis_image = image.copy()
bbox_normalized = analysis_result.get('bbox_normalized')
if not bbox_normalized:
print("Error: 'bbox_normalized' not found in analysis result.")
return ""
# Convert normalized bbox to pixel coordinates for drawing the main ROI
x1, y1, x2, y2 = (
int(bbox_normalized[0] * w / 1000),
int(bbox_normalized[1] * h / 1000),
int(bbox_normalized[2] * w / 1000),
int(bbox_normalized[3] * h / 1000)
)
cv2.rectangle(vis_image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Green for main ROI
# Draw horizontal groups (Blue)
for i, group_norm in enumerate(analysis_result.get('horizontal_groups', [])):
g_x1, g_y1, g_x2, g_y2 = (
int(group_norm[0] * w / 1000),
int(group_norm[1] * h / 1000),
int(group_norm[2] * w / 1000),
int(group_norm[3] * h / 1000)
)
cv2.rectangle(vis_image, (g_x1, g_y1), (g_x2, g_y2), (255, 0, 0), 1)
cv2.putText(vis_image, f'H{i}', (g_x1, g_y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
# Draw vertical groups (Red)
for i, group_norm in enumerate(analysis_result.get('vertical_groups', [])):
g_x1, g_y1, g_x2, g_y2 = (
int(group_norm[0] * w / 1000),
int(group_norm[1] * h / 1000),
int(group_norm[2] * w / 1000),
int(group_norm[3] * h / 1000)
)
cv2.rectangle(vis_image, (g_x1, g_y1), (g_x2, g_y2), (0, 0, 255), 1)
cv2.putText(vis_image, f'V{i}', (g_x1, g_y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
if save_path is None:
base_name = os.path.splitext(os.path.basename(image_path))[0]
save_path = f"data/{base_name}_projection_analysis.png"
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if cv2.imwrite(save_path, vis_image):
print(f"Projection analysis visualization saved to: {save_path}")
return save_path
else:
print("Error: Failed to save visualization")
return ""
class Bot:
def __init__(self, key_path, patience=3) -> None:
if os.path.exists(key_path):
with open(key_path, "r") as f:
self.key = f.read().replace("\n", "")
else:
self.key = key_path
self.patience = patience
def ask(self):
raise NotImplementedError
def try_ask(self, question, image_encoding=None, verbose=False):
for i in range(self.patience):
try:
return self.ask(question, image_encoding, verbose)
except Exception as e:
print(e, "waiting for 5 seconds")
time.sleep(5)
return None
class Doubao(Bot):
def __init__(self, key_path, patience=3, model="doubao-1.5-thinking-vision-pro-250428") -> None:
super().__init__(key_path, patience)
self.client = Ark(api_key=self.key)
self.model = model
def ask(self, question, image_encoding=None, verbose=False):
if image_encoding:
content = {
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_encoding}",
},
},
],
}
else:
content = {"role": "user", "content": question}
response = self.client.chat.completions.create(
model=self.model,
messages=[content],
max_tokens=4096,
temperature=0,
)
response = response.choices[0].message.content
if verbose:
print("####################################")
print("question:\n", question)
print("####################################")
print("response:\n", response)
# print("seed used: 42")
# img = base64.b64decode(image_encoding)
# img = Image.open(io.BytesIO(img))
# img.show()
return response
class Qwen_2_5_VL(Bot):
def __init__(self, key_path, patience=3, model="qwen2.5-vl-32b-instruct") -> None:
super().__init__(key_path, patience)
self.client = OpenAI(api_key=self.key, base_url="https://dashscope.aliyuncs.com/compatible-mode/v1")
self.name = model
def ask(self, question, image_encoding=None, verbose=False):
if image_encoding:
content = {
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_encoding}"
}
}
]
}
else:
content = {"role": "user", "content": question}
response = self.client.chat.completions.create(
model=self.name,
messages=[content],
max_tokens=4096,
temperature=0,
seed=42,
)
response = response.choices[0].message.content
if verbose:
print("####################################")
print("question:\n", question)
print("####################################")
print("response:\n", response)
print("seed used: 42")
return response