Spaces:
Configuration error
Configuration error
DoctorSlimm
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -30,16 +30,45 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
30 |
).to(DEVICE).eval()
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
@spaces.GPU
|
34 |
def generate_caption(image, prompt):
|
|
|
35 |
|
36 |
# Process the image and the prompt
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
## make predictions via api ##
|
@@ -53,85 +82,4 @@ demo = gr.Interface(
|
|
53 |
)
|
54 |
|
55 |
# Launch the interface
|
56 |
-
demo.launch(share=True)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
####### ML CODE #######
|
61 |
-
import torch
|
62 |
-
from PIL import Image
|
63 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
64 |
-
|
65 |
-
MODEL_PATH = "THUDM/cogvlm2-llama3-chat-19B"
|
66 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
67 |
-
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
|
68 |
-
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
70 |
-
MODEL_PATH,
|
71 |
-
trust_remote_code=True
|
72 |
-
)
|
73 |
-
model = AutoModelForCausalLM.from_pretrained(
|
74 |
-
MODEL_PATH,
|
75 |
-
torch_dtype=TORCH_TYPE,
|
76 |
-
trust_remote_code=True,
|
77 |
-
).to(DEVICE).eval()
|
78 |
-
|
79 |
-
text_only_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
|
80 |
-
|
81 |
-
while True:
|
82 |
-
image_path = input("image path >>>>> ")
|
83 |
-
if image_path == '':
|
84 |
-
print('You did not enter image path, the following will be a plain text conversation.')
|
85 |
-
image = None
|
86 |
-
text_only_first_query = True
|
87 |
-
else:
|
88 |
-
image = Image.open(image_path).convert('RGB')
|
89 |
-
|
90 |
-
history = []
|
91 |
-
|
92 |
-
while True:
|
93 |
-
query = input("Human:")
|
94 |
-
if query == "clear":
|
95 |
-
break
|
96 |
-
|
97 |
-
if image is None:
|
98 |
-
if text_only_first_query:
|
99 |
-
query = text_only_template.format(query)
|
100 |
-
text_only_first_query = False
|
101 |
-
else:
|
102 |
-
old_prompt = ''
|
103 |
-
for _, (old_query, response) in enumerate(history):
|
104 |
-
old_prompt += old_query + " " + response + "\n"
|
105 |
-
query = old_prompt + "USER: {} ASSISTANT:".format(query)
|
106 |
-
if image is None:
|
107 |
-
input_by_model = model.build_conversation_input_ids(
|
108 |
-
tokenizer,
|
109 |
-
query=query,
|
110 |
-
history=history,
|
111 |
-
template_version='chat'
|
112 |
-
)
|
113 |
-
else:
|
114 |
-
input_by_model = model.build_conversation_input_ids(
|
115 |
-
tokenizer,
|
116 |
-
query=query,
|
117 |
-
history=history,
|
118 |
-
images=[image],
|
119 |
-
template_version='chat'
|
120 |
-
)
|
121 |
-
inputs = {
|
122 |
-
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
|
123 |
-
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
|
124 |
-
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
|
125 |
-
'images': [[input_by_model['images'][0].to(DEVICE).to(TORCH_TYPE)]] if image is not None else None,
|
126 |
-
}
|
127 |
-
gen_kwargs = {
|
128 |
-
"max_new_tokens": 2048,
|
129 |
-
"pad_token_id": 128002,
|
130 |
-
}
|
131 |
-
with torch.no_grad():
|
132 |
-
outputs = model.generate(**inputs, **gen_kwargs)
|
133 |
-
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
134 |
-
response = tokenizer.decode(outputs[0])
|
135 |
-
response = response.split("<|end_of_text|>")[0]
|
136 |
-
print("\nCogVLM2:", response)
|
137 |
-
history.append((query, response))
|
|
|
30 |
).to(DEVICE).eval()
|
31 |
|
32 |
|
33 |
+
|
34 |
+
text_only_template = """A chat between a curious user and an artificial intelligence assistant. \
|
35 |
+
The assistant gives helpful, detailed, and polite answers to the user's questions. \
|
36 |
+
USER: {} ASSISTANT:"""
|
37 |
+
|
38 |
+
|
39 |
@spaces.GPU
|
40 |
def generate_caption(image, prompt):
|
41 |
+
print(DEVICE)
|
42 |
|
43 |
# Process the image and the prompt
|
44 |
+
|
45 |
+
# image = Image.open(image_path).convert('RGB')
|
46 |
+
image = image.convert('RGB')
|
47 |
+
query = text_only_template.format(query)
|
48 |
+
input_by_model = model.build_conversation_input_ids(
|
49 |
+
tokenizer,
|
50 |
+
query=query,
|
51 |
+
history=[],
|
52 |
+
images=[image],
|
53 |
+
template_version='chat'
|
54 |
+
)
|
55 |
+
inputs = {
|
56 |
+
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
|
57 |
+
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
|
58 |
+
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
|
59 |
+
'images': [[input_by_model['images'][0].to(DEVICE).to(TORCH_TYPE)]] if image is not None else None,
|
60 |
+
}
|
61 |
+
gen_kwargs = {
|
62 |
+
"max_new_tokens": 2048,
|
63 |
+
"pad_token_id": 128002,
|
64 |
+
}
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
67 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
68 |
+
response = tokenizer.decode(outputs[0])
|
69 |
+
response = response.split("<|end_of_text|>")[0]
|
70 |
+
print("\nCogVLM2:", response)
|
71 |
+
return response
|
72 |
|
73 |
|
74 |
## make predictions via api ##
|
|
|
82 |
)
|
83 |
|
84 |
# Launch the interface
|
85 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|