Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from scipy.ndimage import gaussian_filter | |
from transformers import ( | |
AutoImageProcessor, | |
AutoModelForDepthEstimation, | |
) | |
import torch | |
def resize_to_512(img: Image.Image) -> Image.Image: | |
return img.resize((512, 512)) if img.size != (512, 512) else img | |
def gaussian_blur(img: Image.Image, kernel_size: int): | |
img = resize_to_512(img) | |
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
blurred = cv2.GaussianBlur(img_cv, (kernel_size | 1, kernel_size | 1), 0) | |
return cv2.cvtColor(blurred, cv2.COLOR_BGR2RGB) | |
# Load model once globally | |
depth_model_id = "depth-anything/Depth-Anything-V2-Small-hf" | |
processor = AutoImageProcessor.from_pretrained(depth_model_id) | |
depth_model = AutoModelForDepthEstimation.from_pretrained(depth_model_id) | |
def lens_blur(img: Image.Image, max_blur_radius: int): | |
img = resize_to_512(img) | |
original = np.array(img).astype(np.float32) | |
# Get depth map | |
inputs = processor(images=img, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = depth_model(**inputs) | |
predicted_depth = outputs.predicted_depth | |
depth = ( | |
torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=(512, 512), | |
mode="bicubic", | |
align_corners=False, | |
) | |
.squeeze() | |
.cpu() | |
.numpy() | |
) | |
# Normalize and invert depth | |
depth_norm = (depth - depth.min()) / (depth.max() - depth.min()) | |
depth_inverted = 1.0 - depth_norm | |
# Dynamically scale blur strength using the slider | |
num_levels = 6 # More levels for smoother transitions | |
max_sigma = ( | |
max_blur_radius / 2.0 | |
) # Scale down to reasonable range (e.g. 0β25 β 0β12.5 sigma) | |
blur_levels = np.linspace(0, max_sigma, num_levels) | |
blurred_images = [gaussian_filter(original, sigma=(s, s, 0)) for s in blur_levels] | |
# Blend based on depth | |
blurred_final = np.zeros_like(original, dtype=np.float32) | |
depth_scaled = depth_inverted * (num_levels - 1) | |
depth_int = np.floor(depth_scaled).astype(int) | |
depth_frac = depth_scaled - depth_int | |
for i in range(num_levels - 1): | |
mask = depth_int == i | |
alpha = depth_frac[mask] | |
for c in range(3): | |
blended = ( | |
blurred_images[i][..., c][mask] * (1 - alpha) | |
+ blurred_images[i + 1][..., c][mask] * alpha | |
) | |
blurred_final[..., c][mask] = blended | |
return np.clip(blurred_final, 0, 255).astype(np.uint8) | |
# Separate update functions | |
def update_gaussian(img, kernel_size): | |
return gaussian_blur(img, kernel_size) | |
def update_lens(img, max_blur_radius): | |
return lens_blur(img, max_blur_radius) | |
def apply_blurs(img, kernel_size, max_blur_radius): | |
g_blurred = gaussian_blur(img, kernel_size) | |
l_blurred = lens_blur(img, max_blur_radius) | |
return g_blurred, l_blurred | |
with gr.Blocks() as demo: | |
gr.Markdown("## π Apply Gaussian and Depth-Based Lens Blur") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload Image") | |
with gr.Row(): | |
kernel_slider = gr.Slider(1, 49, step=2, value=11, label="Gaussian Kernel Size") | |
lens_slider = gr.Slider( | |
1, 50, step=1, value=15, label="Max Lens Blur Intensity" | |
) | |
with gr.Row(): | |
gaussian_output = gr.Image(label="Gaussian Blurred Image") | |
lens_output = gr.Image(label="Depth-Based Lens Blurred Image") | |
# Trigger both when image changes | |
image_input.change( | |
fn=apply_blurs, | |
inputs=[image_input, kernel_slider, lens_slider], | |
outputs=[gaussian_output, lens_output], | |
) | |
# Trigger only gaussian blur | |
kernel_slider.change( | |
fn=update_gaussian, | |
inputs=[image_input, kernel_slider], | |
outputs=gaussian_output, | |
) | |
# Trigger only lens blur | |
lens_slider.change( | |
fn=update_lens, | |
inputs=[image_input, lens_slider], | |
outputs=lens_output, | |
) | |
demo.launch() | |