Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel | |
# Load Med42 | |
med42_model_name = "m42-health/med42-70b" | |
med42_tokenizer = AutoTokenizer.from_pretrained(med42_model_name) | |
med42_model = AutoModelForCausalLM.from_pretrained(med42_model_name) | |
# Load ClinicalBERT | |
clinicalbert_model_name = "medicalai/ClinicalBERT" | |
clinicalbert_tokenizer = AutoTokenizer.from_pretrained(clinicalbert_model_name) | |
clinicalbert_model = AutoModel.from_pretrained(clinicalbert_model_name) | |
# Define functions | |
def med42_qa(question): | |
inputs = med42_tokenizer(question, return_tensors="pt") | |
outputs = med42_model.generate(**inputs, max_length=200) | |
return med42_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def analyze_ehr(text): | |
inputs = clinicalbert_tokenizer(text, return_tensors="pt") | |
embeddings = clinicalbert_model(**inputs).last_hidden_state | |
return f"ClinicalBERT generated embeddings with shape: {embeddings.shape}" | |
# Combine Gradio Interface | |
def combined_tool(input_text): | |
qa_result = med42_qa(input_text) | |
ehr_result = analyze_ehr(input_text) | |
return f"Med42 Answer:\n{qa_result}\n\nClinicalBERT Analysis:\n{ehr_result}" | |
# Build Gradio UI | |
interface = gr.Interface( | |
fn=combined_tool, | |
inputs="text", | |
outputs="text", | |
title="Healthcare AI Tool", | |
description="Use Med42 for medical Q&A and ClinicalBERT for EHR analysis." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |
import os | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load authentication token from environment variables | |
hf_token = os.getenv("HF_AUTH_TOKEN") | |
# Load the Med42 model with the token | |
med42_model_name = "m42-health/med42-70b" | |
med42_tokenizer = AutoTokenizer.from_pretrained(med42_model_name, use_auth_token=hf_token) | |
med42_model = AutoModelForCausalLM.from_pretrained(med42_model_name, use_auth_token=hf_token) | |
import os | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load the token from the environment | |
hf_token = os.getenv("HF_AUTH_TOKEN") | |
# Load Med42 model and tokenizer | |
med42_model_name = "m42-health/med42-70b" | |
med42_tokenizer = AutoTokenizer.from_pretrained(med42_model_name, use_auth_token=hf_token) | |
med42_model = AutoModelForCausalLM.from_pretrained(med42_model_name, use_auth_token=hf_token) | |