Spaces:
Runtime error
Runtime error
Commit
·
bea1d24
1
Parent(s):
d3b9cb7
Add application file
Browse files- Dockerfile +22 -0
- app.py +45 -0
- requirements.txt +5 -0
- text_humanizer.py +200 -0
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
# download spacy model and nltk resources at build time
|
13 |
+
RUN python -m spacy download en_core_web_sm || true
|
14 |
+
RUN python - <<'PY'
|
15 |
+
from text_humanizer import download_nltk_resources
|
16 |
+
download_nltk_resources()
|
17 |
+
PY
|
18 |
+
|
19 |
+
EXPOSE 7860
|
20 |
+
|
21 |
+
COPY --chown=user . /app
|
22 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from fastapi import FastAPI, Header, HTTPException, Depends
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from text_humanizer import TextHumanizer, download_nltk_resources
|
5 |
+
import spacy
|
6 |
+
|
7 |
+
API_KEY = os.environ.get("API_KEY", "dev-key")
|
8 |
+
PORT = int(os.environ.get("PORT", 7860))
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
humanizer = None
|
12 |
+
|
13 |
+
class HumanizeReq(BaseModel):
|
14 |
+
text: str
|
15 |
+
use_passive: bool = False
|
16 |
+
use_synonyms: bool = False
|
17 |
+
|
18 |
+
def verify_key(x_api_key: str = Header(None)):
|
19 |
+
if x_api_key != API_KEY:
|
20 |
+
raise HTTPException(status_code=403, detail="Forbidden")
|
21 |
+
return True
|
22 |
+
|
23 |
+
@app.get("/")
|
24 |
+
def greet_json():
|
25 |
+
return {"Hello": "World!"}
|
26 |
+
|
27 |
+
@app.on_event("startup")
|
28 |
+
def startup():
|
29 |
+
# ensure NLTK resources and spacy model are available at runtime
|
30 |
+
download_nltk_resources()
|
31 |
+
try:
|
32 |
+
spacy.load("en_core_web_sm")
|
33 |
+
except OSError:
|
34 |
+
import spacy.cli
|
35 |
+
spacy.cli.download("en_core_web_sm")
|
36 |
+
global humanizer
|
37 |
+
humanizer = TextHumanizer()
|
38 |
+
|
39 |
+
@app.post("/humanize")
|
40 |
+
def humanize(req: HumanizeReq, _=Depends(verify_key)):
|
41 |
+
return {"humanized": humanizer.humanize_text(req.text, req.use_passive, req.use_synonyms)}
|
42 |
+
|
43 |
+
# if __name__ == "__main__":
|
44 |
+
# import uvicorn
|
45 |
+
# uvicorn.run(app, host="0.0.0.0", port=PORT)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
spacy
|
4 |
+
nltk
|
5 |
+
sentence-transformers
|
text_humanizer.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ssl
|
2 |
+
import random
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import nltk
|
6 |
+
import spacy
|
7 |
+
from nltk.tokenize import word_tokenize
|
8 |
+
from nltk.corpus import wordnet
|
9 |
+
from sentence_transformers import SentenceTransformer, util
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
12 |
+
|
13 |
+
NLP_GLOBAL = spacy.load("en_core_web_sm")
|
14 |
+
|
15 |
+
def download_nltk_resources():
|
16 |
+
"""
|
17 |
+
Download required NLTK resources if not already installed.
|
18 |
+
"""
|
19 |
+
try:
|
20 |
+
_create_unverified_https_context = ssl._create_unverified_context
|
21 |
+
except AttributeError:
|
22 |
+
pass
|
23 |
+
else:
|
24 |
+
ssl._create_default_https_context = _create_unverified_https_context
|
25 |
+
|
26 |
+
resources = ['punkt', 'averaged_perceptron_tagger', 'punkt_tab','wordnet','averaged_perceptron_tagger_eng']
|
27 |
+
for resource in resources:
|
28 |
+
try:
|
29 |
+
nltk.download(resource, quiet=True)
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error downloading {resource}: {str(e)}")
|
32 |
+
|
33 |
+
|
34 |
+
# This class contains methods to humanize academic text, such as improving readability or
|
35 |
+
# simplifying complex language.
|
36 |
+
class TextHumanizer:
|
37 |
+
"""
|
38 |
+
Transforms text into a more formal (academic) style:
|
39 |
+
- Expands contractions
|
40 |
+
- Adds academic transitions
|
41 |
+
- Optionally converts some sentences to passive voice
|
42 |
+
- Optionally replaces words with synonyms for more formality
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
model_name='paraphrase-MiniLM-L6-v2',
|
48 |
+
p_passive=0.2,
|
49 |
+
p_synonym_replacement=0.3,
|
50 |
+
p_academic_transition=0.3,
|
51 |
+
seed=None
|
52 |
+
):
|
53 |
+
if seed is not None:
|
54 |
+
random.seed(seed)
|
55 |
+
|
56 |
+
self.nlp = spacy.load("en_core_web_sm")
|
57 |
+
self.model = SentenceTransformer(model_name)
|
58 |
+
|
59 |
+
# Transformation probabilities
|
60 |
+
self.p_passive = p_passive
|
61 |
+
self.p_synonym_replacement = p_synonym_replacement
|
62 |
+
self.p_academic_transition = p_academic_transition
|
63 |
+
|
64 |
+
# Common academic transitions
|
65 |
+
self.academic_transitions = [
|
66 |
+
"Moreover,", "Additionally,", "Furthermore,", "Hence,",
|
67 |
+
"Therefore,", "Consequently,", "Nonetheless,", "Nevertheless,"
|
68 |
+
]
|
69 |
+
|
70 |
+
def humanize_text(self, text, use_passive=False, use_synonyms=False):
|
71 |
+
doc = self.nlp(text)
|
72 |
+
transformed_sentences = []
|
73 |
+
|
74 |
+
for sent in doc.sents:
|
75 |
+
sentence_str = sent.text.strip()
|
76 |
+
|
77 |
+
# 1. Expand contractions
|
78 |
+
sentence_str = self.expand_contractions(sentence_str)
|
79 |
+
|
80 |
+
# 2. Possibly add academic transitions
|
81 |
+
# if random.random() < self.p_academic_transition:
|
82 |
+
# sentence_str = self.add_academic_transitions(sentence_str)
|
83 |
+
|
84 |
+
# 3. Optionally convert to passive
|
85 |
+
if use_passive and random.random() < self.p_passive:
|
86 |
+
sentence_str = self.convert_to_passive(sentence_str)
|
87 |
+
|
88 |
+
# 4. Optionally replace words with synonyms
|
89 |
+
if use_synonyms and random.random() < self.p_synonym_replacement:
|
90 |
+
sentence_str = self.replace_with_synonyms(sentence_str)
|
91 |
+
|
92 |
+
transformed_sentences.append(sentence_str)
|
93 |
+
|
94 |
+
return ' '.join(transformed_sentences)
|
95 |
+
|
96 |
+
def expand_contractions(self, sentence):
|
97 |
+
contraction_map = {
|
98 |
+
"n't": " not", "'re": " are", "'s": " is", "'ll": " will",
|
99 |
+
"'ve": " have", "'d": " would", "'m": " am"
|
100 |
+
}
|
101 |
+
tokens = word_tokenize(sentence)
|
102 |
+
expanded_tokens = []
|
103 |
+
for token in tokens:
|
104 |
+
lower_token = token.lower()
|
105 |
+
replaced = False
|
106 |
+
for contraction, expansion in contraction_map.items():
|
107 |
+
if contraction in lower_token and lower_token.endswith(contraction):
|
108 |
+
new_token = lower_token.replace(contraction, expansion)
|
109 |
+
if token[0].isupper():
|
110 |
+
new_token = new_token.capitalize()
|
111 |
+
expanded_tokens.append(new_token)
|
112 |
+
replaced = True
|
113 |
+
break
|
114 |
+
if not replaced:
|
115 |
+
expanded_tokens.append(token)
|
116 |
+
|
117 |
+
return ' '.join(expanded_tokens)
|
118 |
+
|
119 |
+
def add_academic_transitions(self, sentence):
|
120 |
+
transition = random.choice(self.academic_transitions)
|
121 |
+
return f"{transition} {sentence}"
|
122 |
+
|
123 |
+
def convert_to_passive(self, sentence):
|
124 |
+
doc = self.nlp(sentence)
|
125 |
+
subj_tokens = [t for t in doc if t.dep_ == 'nsubj' and t.head.dep_ == 'ROOT']
|
126 |
+
dobj_tokens = [t for t in doc if t.dep_ == 'dobj']
|
127 |
+
|
128 |
+
if subj_tokens and dobj_tokens:
|
129 |
+
subject = subj_tokens[0]
|
130 |
+
dobj = dobj_tokens[0]
|
131 |
+
verb = subject.head
|
132 |
+
if subject.i < verb.i < dobj.i:
|
133 |
+
passive_str = f"{dobj.text} {verb.lemma_} by {subject.text}"
|
134 |
+
original_str = ' '.join(token.text for token in doc)
|
135 |
+
chunk = f"{subject.text} {verb.text} {dobj.text}"
|
136 |
+
if chunk in original_str:
|
137 |
+
sentence = original_str.replace(chunk, passive_str)
|
138 |
+
return sentence
|
139 |
+
|
140 |
+
def replace_with_synonyms(self, sentence):
|
141 |
+
tokens = word_tokenize(sentence)
|
142 |
+
pos_tags = nltk.pos_tag(tokens)
|
143 |
+
|
144 |
+
new_tokens = []
|
145 |
+
for (word, pos) in pos_tags:
|
146 |
+
if pos.startswith(('J', 'N', 'V', 'R')) and wordnet.synsets(word):
|
147 |
+
if random.random() < 0.5:
|
148 |
+
synonyms = self._get_synonyms(word, pos)
|
149 |
+
if synonyms:
|
150 |
+
best_synonym = self._select_closest_synonym(word, synonyms)
|
151 |
+
new_tokens.append(best_synonym if best_synonym else word)
|
152 |
+
else:
|
153 |
+
new_tokens.append(word)
|
154 |
+
else:
|
155 |
+
new_tokens.append(word)
|
156 |
+
else:
|
157 |
+
new_tokens.append(word)
|
158 |
+
|
159 |
+
# Join cleanly with punctuation fix
|
160 |
+
sentence = " ".join(new_tokens)
|
161 |
+
sentence = (
|
162 |
+
sentence.replace(" ,", ",")
|
163 |
+
.replace(" .", ".")
|
164 |
+
.replace(" !", "!")
|
165 |
+
.replace(" ?", "?")
|
166 |
+
.replace(" :", ":")
|
167 |
+
.replace(" '", "'")
|
168 |
+
)
|
169 |
+
return sentence
|
170 |
+
|
171 |
+
def _get_synonyms(self, word, pos):
|
172 |
+
wn_pos = None
|
173 |
+
if pos.startswith('J'):
|
174 |
+
wn_pos = wordnet.ADJ
|
175 |
+
elif pos.startswith('N'):
|
176 |
+
wn_pos = wordnet.NOUN
|
177 |
+
elif pos.startswith('R'):
|
178 |
+
wn_pos = wordnet.ADV
|
179 |
+
elif pos.startswith('V'):
|
180 |
+
wn_pos = wordnet.VERB
|
181 |
+
|
182 |
+
synonyms = set()
|
183 |
+
for syn in wordnet.synsets(word, pos=wn_pos):
|
184 |
+
for lemma in syn.lemmas():
|
185 |
+
lemma_name = lemma.name().replace('_', ' ')
|
186 |
+
if lemma_name.lower() != word.lower():
|
187 |
+
synonyms.add(lemma_name)
|
188 |
+
return list(synonyms)
|
189 |
+
|
190 |
+
def _select_closest_synonym(self, original_word, synonyms):
|
191 |
+
if not synonyms:
|
192 |
+
return None
|
193 |
+
original_emb = self.model.encode(original_word, convert_to_tensor=True)
|
194 |
+
synonym_embs = self.model.encode(synonyms, convert_to_tensor=True)
|
195 |
+
cos_scores = util.cos_sim(original_emb, synonym_embs)[0]
|
196 |
+
max_score_index = cos_scores.argmax().item()
|
197 |
+
max_score = cos_scores[max_score_index].item()
|
198 |
+
if max_score >= 0.5:
|
199 |
+
return synonyms[max_score_index]
|
200 |
+
return None
|