{
"cells": [
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true,
"id": "YiqoDvwciAfw"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"#!pip install pycaret\n",
"import pycaret as py"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "PzTN5VW4iAf_"
},
"outputs": [],
"source": [
"from pycaret.classification import *"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "VPOnf5JwiAgC",
"outputId": "85111d4b-826b-44f2-e520-28f638cda692"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" gender age hypertension heart_disease ever_married work_type \\\n",
"0 Male 67.0 0 1 Yes Private \n",
"1 Male 80.0 0 1 Yes Private \n",
"2 Female 49.0 0 0 Yes Private \n",
"3 Female 79.0 1 0 Yes Self-employed \n",
"4 Male 81.0 0 0 Yes Private \n",
"\n",
" Residence_type avg_glucose_level bmi smoking_status stroke \n",
"0 Urban 228.69 36.6 formerly smoked 1 \n",
"1 Rural 105.92 32.5 never smoked 1 \n",
"2 Urban 171.23 34.4 smokes 1 \n",
"3 Rural 174.12 24.0 never smoked 1 \n",
"4 Urban 186.21 29.0 formerly smoked 1 "
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" gender \n",
" age \n",
" hypertension \n",
" heart_disease \n",
" ever_married \n",
" work_type \n",
" Residence_type \n",
" avg_glucose_level \n",
" bmi \n",
" smoking_status \n",
" stroke \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Male \n",
" 67.0 \n",
" 0 \n",
" 1 \n",
" Yes \n",
" Private \n",
" Urban \n",
" 228.69 \n",
" 36.6 \n",
" formerly smoked \n",
" 1 \n",
" \n",
" \n",
" 1 \n",
" Male \n",
" 80.0 \n",
" 0 \n",
" 1 \n",
" Yes \n",
" Private \n",
" Rural \n",
" 105.92 \n",
" 32.5 \n",
" never smoked \n",
" 1 \n",
" \n",
" \n",
" 2 \n",
" Female \n",
" 49.0 \n",
" 0 \n",
" 0 \n",
" Yes \n",
" Private \n",
" Urban \n",
" 171.23 \n",
" 34.4 \n",
" smokes \n",
" 1 \n",
" \n",
" \n",
" 3 \n",
" Female \n",
" 79.0 \n",
" 1 \n",
" 0 \n",
" Yes \n",
" Self-employed \n",
" Rural \n",
" 174.12 \n",
" 24.0 \n",
" never smoked \n",
" 1 \n",
" \n",
" \n",
" 4 \n",
" Male \n",
" 81.0 \n",
" 0 \n",
" 0 \n",
" Yes \n",
" Private \n",
" Urban \n",
" 186.21 \n",
" 29.0 \n",
" formerly smoked \n",
" 1 \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "data",
"summary": "{\n \"name\": \"data\",\n \"rows\": 4981,\n \"fields\": [\n {\n \"column\": \"gender\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Female\",\n \"Male\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 22.6627550736985,\n \"min\": 0.08,\n \"max\": 82.0,\n \"num_unique_values\": 104,\n \"samples\": [\n 70.0,\n 36.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"hypertension\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"heart_disease\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ever_married\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"No\",\n \"Yes\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"work_type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"Self-employed\",\n \"children\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Residence_type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Rural\",\n \"Urban\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"avg_glucose_level\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 45.07537280843004,\n \"min\": 55.12,\n \"max\": 271.74,\n \"num_unique_values\": 3895,\n \"samples\": [\n 106.69,\n 95.43\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"bmi\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6.79046362629275,\n \"min\": 14.0,\n \"max\": 48.9,\n \"num_unique_values\": 342,\n \"samples\": [\n 17.5,\n 20.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"smoking_status\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 4,\n \"samples\": [\n \"never smoked\",\n \"Unknown\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"stroke\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 24
}
],
"source": [
"data = pd.read_csv(\"brain_stroke.csv\")\n",
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 865
},
"id": "jo9FYeP9iAgF",
"outputId": "ada3d86b-78d3-4602-a8a9-3bcee9977668"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" Description \n",
" Value \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Session id \n",
" 6614 \n",
" \n",
" \n",
" 1 \n",
" Target \n",
" stroke \n",
" \n",
" \n",
" 2 \n",
" Target type \n",
" Binary \n",
" \n",
" \n",
" 3 \n",
" Original data shape \n",
" (4981, 11) \n",
" \n",
" \n",
" 4 \n",
" Transformed data shape \n",
" (8119, 17) \n",
" \n",
" \n",
" 5 \n",
" Transformed train set shape \n",
" (6624, 17) \n",
" \n",
" \n",
" 6 \n",
" Transformed test set shape \n",
" (1495, 17) \n",
" \n",
" \n",
" 7 \n",
" Numeric features \n",
" 5 \n",
" \n",
" \n",
" 8 \n",
" Categorical features \n",
" 5 \n",
" \n",
" \n",
" 9 \n",
" Preprocess \n",
" True \n",
" \n",
" \n",
" 10 \n",
" Imputation type \n",
" simple \n",
" \n",
" \n",
" 11 \n",
" Numeric imputation \n",
" mean \n",
" \n",
" \n",
" 12 \n",
" Categorical imputation \n",
" mode \n",
" \n",
" \n",
" 13 \n",
" Maximum one-hot encoding \n",
" 25 \n",
" \n",
" \n",
" 14 \n",
" Encoding method \n",
" None \n",
" \n",
" \n",
" 15 \n",
" Fix imbalance \n",
" True \n",
" \n",
" \n",
" 16 \n",
" Fix imbalance method \n",
" SMOTE \n",
" \n",
" \n",
" 17 \n",
" Normalize \n",
" True \n",
" \n",
" \n",
" 18 \n",
" Normalize method \n",
" minmax \n",
" \n",
" \n",
" 19 \n",
" Fold Generator \n",
" StratifiedKFold \n",
" \n",
" \n",
" 20 \n",
" Fold Number \n",
" 10 \n",
" \n",
" \n",
" 21 \n",
" CPU Jobs \n",
" -1 \n",
" \n",
" \n",
" 22 \n",
" Use GPU \n",
" False \n",
" \n",
" \n",
" 23 \n",
" Log Experiment \n",
" False \n",
" \n",
" \n",
" 24 \n",
" Experiment Name \n",
" clf-default-name \n",
" \n",
" \n",
" 25 \n",
" USI \n",
" b230 \n",
" \n",
" \n",
"
\n"
]
},
"metadata": {}
}
],
"source": [
"# init setup\n",
"from pycaret.classification import *\n",
"clf1 = setup(data, target = 'stroke', fix_imbalance = True, normalize = True, normalize_method = 'minmax')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 583,
"referenced_widgets": [
"d6aec64a520e45c59a1d7ff21afab2a6",
"2b6c3c317ee14b83800511533f3c3966",
"a5a47acdd787405189ad6ecb364f0260",
"88a8e29913d94310b7813dc6fecbabf0",
"526f4bd16f5941b7b147b199a4f74ab6",
"42ab3a06bae44738adb1cd3a7e063c0c",
"5a2c0f4b7ac24a6b9a6a45b22fc6ebde",
"02a0003d391a4be79b49b4264a3f56d6",
"c7b063eb359749b699c50627962ee14d",
"5e7b4a601976495abeb1594a748c1f31",
"303bef0ded6a426880f92c1eeb56cb5c"
]
},
"id": "bPCM0EYuiAgH",
"outputId": "4c94d6fe-1dad-4c5f-d0c4-6ec25412517a"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": []
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" Model \n",
" Accuracy \n",
" AUC \n",
" Recall \n",
" Prec. \n",
" F1 \n",
" Kappa \n",
" MCC \n",
" TT (Sec) \n",
" \n",
" \n",
" \n",
" \n",
" dummy \n",
" Dummy Classifier \n",
" 0.9501 \n",
" 0.5000 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.1590 \n",
" \n",
" \n",
" ada \n",
" Ada Boost Classifier \n",
" 0.9458 \n",
" 0.8091 \n",
" 0.0520 \n",
" 0.3450 \n",
" 0.0879 \n",
" 0.0737 \n",
" 0.1126 \n",
" 0.7550 \n",
" \n",
" \n",
" gbc \n",
" Gradient Boosting Classifier \n",
" 0.9441 \n",
" 0.8126 \n",
" 0.0288 \n",
" 0.1833 \n",
" 0.0492 \n",
" 0.0348 \n",
" 0.0525 \n",
" 1.5730 \n",
" \n",
" \n",
" rf \n",
" Random Forest Classifier \n",
" 0.9426 \n",
" 0.7779 \n",
" 0.0176 \n",
" 0.0833 \n",
" 0.0287 \n",
" 0.0138 \n",
" 0.0176 \n",
" 1.0440 \n",
" \n",
" \n",
" lightgbm \n",
" Light Gradient Boosting Machine \n",
" 0.9412 \n",
" 0.7909 \n",
" 0.0288 \n",
" 0.1167 \n",
" 0.0456 \n",
" 0.0274 \n",
" 0.0346 \n",
" 0.8560 \n",
" \n",
" \n",
" et \n",
" Extra Trees Classifier \n",
" 0.9372 \n",
" 0.7468 \n",
" 0.0575 \n",
" 0.1439 \n",
" 0.0801 \n",
" 0.0558 \n",
" 0.0623 \n",
" 0.6030 \n",
" \n",
" \n",
" xgboost \n",
" Extreme Gradient Boosting \n",
" 0.9355 \n",
" 0.7723 \n",
" 0.0395 \n",
" 0.1465 \n",
" 0.0598 \n",
" 0.0343 \n",
" 0.0457 \n",
" 0.5770 \n",
" \n",
" \n",
" dt \n",
" Decision Tree Classifier \n",
" 0.9039 \n",
" 0.5307 \n",
" 0.1160 \n",
" 0.0996 \n",
" 0.1060 \n",
" 0.0564 \n",
" 0.0568 \n",
" 0.1840 \n",
" \n",
" \n",
" knn \n",
" K Neighbors Classifier \n",
" 0.8480 \n",
" 0.6144 \n",
" 0.1948 \n",
" 0.0783 \n",
" 0.1114 \n",
" 0.0441 \n",
" 0.0501 \n",
" 0.2180 \n",
" \n",
" \n",
" lr \n",
" Logistic Regression \n",
" 0.7476 \n",
" 0.8382 \n",
" 0.7644 \n",
" 0.1378 \n",
" 0.2331 \n",
" 0.1623 \n",
" 0.2491 \n",
" 0.3130 \n",
" \n",
" \n",
" lda \n",
" Linear Discriminant Analysis \n",
" 0.7338 \n",
" 0.8395 \n",
" 0.7817 \n",
" 0.1333 \n",
" 0.2275 \n",
" 0.1555 \n",
" 0.2458 \n",
" 0.1640 \n",
" \n",
" \n",
" ridge \n",
" Ridge Classifier \n",
" 0.7332 \n",
" 0.8403 \n",
" 0.7873 \n",
" 0.1339 \n",
" 0.2286 \n",
" 0.1567 \n",
" 0.2479 \n",
" 0.2290 \n",
" \n",
" \n",
" svm \n",
" SVM - Linear Kernel \n",
" 0.6999 \n",
" 0.8304 \n",
" 0.8225 \n",
" 0.1262 \n",
" 0.2180 \n",
" 0.1439 \n",
" 0.2411 \n",
" 0.1800 \n",
" \n",
" \n",
" qda \n",
" Quadratic Discriminant Analysis \n",
" 0.6517 \n",
" 0.7830 \n",
" 0.7425 \n",
" 0.1053 \n",
" 0.1828 \n",
" 0.1048 \n",
" 0.1823 \n",
" 0.1670 \n",
" \n",
" \n",
" nb \n",
" Naive Bayes \n",
" 0.5728 \n",
" 0.7979 \n",
" 0.8507 \n",
" 0.0935 \n",
" 0.1681 \n",
" 0.0860 \n",
" 0.1809 \n",
" 0.1660 \n",
" \n",
" \n",
"
\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Processing: 0%| | 0/65 [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "d6aec64a520e45c59a1d7ff21afab2a6"
}
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": []
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"DummyClassifier(constant=None, random_state=6614, strategy='prior')"
],
"text/html": [
"DummyClassifier(constant=None, random_state=6614, strategy='prior') In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
]
},
"metadata": {},
"execution_count": 26
}
],
"source": [
"compare_models()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 457,
"referenced_widgets": [
"a54e9226adeb4463b477af37d841ad3e",
"fdda58f9e5b44f56ac2196baf4f93b0d",
"763bc24cd22a40368e6128c67b2293c2",
"6f371e0b7bdb4df58eed5860873cc3e1",
"e1047847a0784564ac6a546b1e7bfb7b",
"643b80db3a7141acb976827d9c2c20df",
"4e01599c310c496c95601b03675a7ee5",
"df8ef845fddc4fc389c51a039d059a9f",
"68d1ae893aad4fddb62f06e49887add1",
"0d118690b6454227b0616e855cff37cc",
"f03769a8644240e6bf5fd3ac261402b1"
]
},
"id": "soBC2z3BiAgK",
"outputId": "d16aac13-ec43-4855-dbfa-5715438df27a"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": []
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" Accuracy \n",
" AUC \n",
" Recall \n",
" Prec. \n",
" F1 \n",
" Kappa \n",
" MCC \n",
" \n",
" \n",
" Fold \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 0.9370 \n",
" 0.7340 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" -0.0226 \n",
" -0.0273 \n",
" \n",
" \n",
" 1 \n",
" 0.9398 \n",
" 0.8139 \n",
" 0.1765 \n",
" 0.3000 \n",
" 0.2222 \n",
" 0.1931 \n",
" 0.2005 \n",
" \n",
" \n",
" 2 \n",
" 0.9370 \n",
" 0.7724 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" -0.0191 \n",
" -0.0251 \n",
" \n",
" \n",
" 3 \n",
" 0.9427 \n",
" 0.8802 \n",
" 0.0556 \n",
" 0.2500 \n",
" 0.0909 \n",
" 0.0735 \n",
" 0.0966 \n",
" \n",
" \n",
" 4 \n",
" 0.9456 \n",
" 0.7764 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" -0.0055 \n",
" -0.0125 \n",
" \n",
" \n",
" 5 \n",
" 0.9456 \n",
" 0.7721 \n",
" 0.1111 \n",
" 0.4000 \n",
" 0.1739 \n",
" 0.1550 \n",
" 0.1899 \n",
" \n",
" \n",
" 6 \n",
" 0.9425 \n",
" 0.8554 \n",
" 0.0588 \n",
" 0.2000 \n",
" 0.0909 \n",
" 0.0703 \n",
" 0.0847 \n",
" \n",
" \n",
" 7 \n",
" 0.9425 \n",
" 0.8139 \n",
" 0.0588 \n",
" 0.2000 \n",
" 0.0909 \n",
" 0.0703 \n",
" 0.0847 \n",
" \n",
" \n",
" 8 \n",
" 0.9454 \n",
" 0.7274 \n",
" 0.0588 \n",
" 0.2500 \n",
" 0.0952 \n",
" 0.0781 \n",
" 0.1006 \n",
" \n",
" \n",
" 9 \n",
" 0.9511 \n",
" 0.8521 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" 0.0000 \n",
" \n",
" \n",
" Mean \n",
" 0.9429 \n",
" 0.7998 \n",
" 0.0520 \n",
" 0.1600 \n",
" 0.0764 \n",
" 0.0593 \n",
" 0.0692 \n",
" \n",
" \n",
" Std \n",
" 0.0041 \n",
" 0.0493 \n",
" 0.0547 \n",
" 0.1411 \n",
" 0.0742 \n",
" 0.0696 \n",
" 0.0798 \n",
" \n",
" \n",
"
\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Processing: 0%| | 0/4 [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "a54e9226adeb4463b477af37d841ad3e"
}
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": []
},
"metadata": {}
}
],
"source": [
"best_model=create_model(\"ada\")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 189,
"referenced_widgets": [
"d57c5efb591b442d9468b8191ab5c1d3",
"c33fb83b223a451aac54a2a6bf7a68e4",
"df24ab74bc4c4e94bde4b4df10777e47",
"906f7de280fd43759a3524b264e2e45a",
"ff0e0f64c4c44354a91e1ad16d671423",
"4576faea095e4d54acd720a7c04a110c",
"3a17b9904f074605be7781706c573d88"
]
},
"id": "VLiSPdgwiAgM",
"outputId": "847185e0-1a92-494f-b817-841fbd3ae050"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Pipeline Plot', 'pipelin…"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "d57c5efb591b442d9468b8191ab5c1d3"
}
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
}
}
],
"source": [
"evaluate_model(best_model)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 696,
"referenced_widgets": [
"33ec3e8ecdef41d6b2d3791b7551af7e",
"979081ad5b7647ee8a5b11c1ca84b0a0",
"3e3336064a7a4c83b2b3c307f48b1844",
"9f90dd10961942a4a2d4228e91323d7c",
"44d62c6d239a420ca8deb3353895a770",
"42a6df484d3c4dbbb7888e7cbfb38dda",
"0ae2736197604017af8e540ce65c2cb4",
"358727466e8d4f338dc83875fed0a498",
"e0261a02c8a34d419045b393f87f667b",
"7cd55352bab8461e9b71801606a51df2",
"cee1e70784434c0699953f9f7d0940c3"
]
},
"id": "0069QGLZiAgO",
"outputId": "e3caf5bc-3da4-4e5b-fa89-7eafa88d1eb0"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"summary": "{\n \"name\": \"tune_model(best_model)\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \" \",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \". . . . . . . . . . . . . . . . . .\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \" \",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"20:30:50\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}",
"type": "dataframe"
},
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" Initiated \n",
" . . . . . . . . . . . . . . . . . . \n",
" 20:30:50 \n",
" \n",
" \n",
" Status \n",
" . . . . . . . . . . . . . . . . . . \n",
" Searching Hyperparameters \n",
" \n",
" \n",
" Estimator \n",
" . . . . . . . . . . . . . . . . . . \n",
" Ada Boost Classifier \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"text/plain": [
" \n",
" \n",
"Initiated . . . . . . . . . . . . . . . . . . 20:30:50\n",
"Status . . . . . . . . . . . . . . . . . . Searching Hyperparameters\n",
"Estimator . . . . . . . . . . . . . . . . . . Ada Boost Classifier"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33ec3e8ecdef41d6b2d3791b7551af7e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Processing: 0%| | 0/7 [00:00, ?it/s]"
]
},
"metadata": {
"application/vnd.jupyter.widget-view+json": {
"colab": {
"custom_widget_manager": {
"url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/2b70e893a8ba7c0f/manager.min.js"
}
}
}
},
"output_type": "display_data"
},
{
"metadata": {
"tags": null
},
"name": "stdout",
"output_type": "stream",
"text": [
"Fitting 10 folds for each of 10 candidates, totalling 100 fits\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": []
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": []
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Original model was better than the tuned model, hence it will be returned. NOTE: The display metrics are for the tuned model (not the original one).\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
"\n",
" \n",
" \n",
" \n",
" Accuracy \n",
" AUC \n",
" Recall \n",
" Prec. \n",
" F1 \n",
" Kappa \n",
" MCC \n",
" \n",
" \n",
" Fold \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 0.9054 \n",
" 0.7570 \n",
" 0.2353 \n",
" 0.1667 \n",
" 0.1951 \n",
" 0.1464 \n",
" 0.1489 \n",
" \n",
" \n",
" 1 \n",
" 0.9312 \n",
" 0.8782 \n",
" 0.3529 \n",
" 0.3158 \n",
" 0.3333 \n",
" 0.2972 \n",
" 0.2977 \n",
" \n",
" \n",
" 2 \n",
" 0.9312 \n",
" 0.8338 \n",
" 0.1111 \n",
" 0.2000 \n",
" 0.1429 \n",
" 0.1101 \n",
" 0.1153 \n",
" \n",
" \n",
" 3 \n",
" 0.9255 \n",
" 0.8662 \n",
" 0.2222 \n",
" 0.2500 \n",
" 0.2353 \n",
" 0.1963 \n",
" 0.1967 \n",
" \n",
" \n",
" 4 \n",
" 0.9140 \n",
" 0.7997 \n",
" 0.2778 \n",
" 0.2273 \n",
" 0.2500 \n",
" 0.2049 \n",
" 0.2061 \n",
" \n",
" \n",
" 5 \n",
" 0.9026 \n",
" 0.8087 \n",
" 0.1667 \n",
" 0.1364 \n",
" 0.1500 \n",
" 0.0989 \n",
" 0.0994 \n",
" \n",
" \n",
" 6 \n",
" 0.9253 \n",
" 0.8881 \n",
" 0.1176 \n",
" 0.1538 \n",
" 0.1333 \n",
" 0.0950 \n",
" 0.0960 \n",
" \n",
" \n",
" 7 \n",
" 0.9109 \n",
" 0.8467 \n",
" 0.1176 \n",
" 0.1111 \n",
" 0.1143 \n",
" 0.0674 \n",
" 0.0675 \n",
" \n",
" \n",
" 8 \n",
" 0.8879 \n",
" 0.7283 \n",
" 0.2353 \n",
" 0.1333 \n",
" 0.1702 \n",
" 0.1150 \n",
" 0.1204 \n",
" \n",
" \n",
" 9 \n",
" 0.9224 \n",
" 0.8337 \n",
" 0.2353 \n",
" 0.2222 \n",
" 0.2286 \n",
" 0.1878 \n",
" 0.1878 \n",
" \n",
" \n",
" Mean \n",
" 0.9157 \n",
" 0.8240 \n",
" 0.2072 \n",
" 0.1917 \n",
" 0.1953 \n",
" 0.1519 \n",
" 0.1536 \n",
" \n",
" \n",
" Std \n",
" 0.0134 \n",
" 0.0490 \n",
" 0.0747 \n",
" 0.0601 \n",
" 0.0637 \n",
" 0.0660 \n",
" 0.0654 \n",
" \n",
" \n",
"
\n"
]
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"AdaBoostClassifier(algorithm='SAMME.R', estimator=None, learning_rate=1.0,\n",
" n_estimators=50, random_state=6614)"
],
"text/html": [
"AdaBoostClassifier(algorithm='SAMME.R', estimator=None, learning_rate=1.0,\n",
" n_estimators=50, random_state=6614) In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
]
},
"metadata": {},
"execution_count": 29
}
],
"source": [
"tune_model(best_model)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"id": "hy6N18fKiAgR"
},
"outputs": [],
"source": [
"#save_model(best_model,\"lr\")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"id": "EGE7wEK6iAgS"
},
"outputs": [],
"source": [
"import pickle\n",
"pickle.dump(best_model, open('ada_dump.pkl', 'wb'))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
},
"colab": {
"provenance": []
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"d6aec64a520e45c59a1d7ff21afab2a6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_2b6c3c317ee14b83800511533f3c3966",
"IPY_MODEL_a5a47acdd787405189ad6ecb364f0260",
"IPY_MODEL_88a8e29913d94310b7813dc6fecbabf0"
],
"layout": "IPY_MODEL_526f4bd16f5941b7b147b199a4f74ab6"
}
},
"2b6c3c317ee14b83800511533f3c3966": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_42ab3a06bae44738adb1cd3a7e063c0c",
"placeholder": "",
"style": "IPY_MODEL_5a2c0f4b7ac24a6b9a6a45b22fc6ebde",
"value": "Processing: 100%"
}
},
"a5a47acdd787405189ad6ecb364f0260": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_02a0003d391a4be79b49b4264a3f56d6",
"max": 65,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_c7b063eb359749b699c50627962ee14d",
"value": 65
}
},
"88a8e29913d94310b7813dc6fecbabf0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5e7b4a601976495abeb1594a748c1f31",
"placeholder": "",
"style": "IPY_MODEL_303bef0ded6a426880f92c1eeb56cb5c",
"value": " 65/65 [01:16<00:00, 1.33it/s]"
}
},
"526f4bd16f5941b7b147b199a4f74ab6": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": "hidden",
"width": null
}
},
"42ab3a06bae44738adb1cd3a7e063c0c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5a2c0f4b7ac24a6b9a6a45b22fc6ebde": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"02a0003d391a4be79b49b4264a3f56d6": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c7b063eb359749b699c50627962ee14d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"5e7b4a601976495abeb1594a748c1f31": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"303bef0ded6a426880f92c1eeb56cb5c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a54e9226adeb4463b477af37d841ad3e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_fdda58f9e5b44f56ac2196baf4f93b0d",
"IPY_MODEL_763bc24cd22a40368e6128c67b2293c2",
"IPY_MODEL_6f371e0b7bdb4df58eed5860873cc3e1"
],
"layout": "IPY_MODEL_e1047847a0784564ac6a546b1e7bfb7b"
}
},
"fdda58f9e5b44f56ac2196baf4f93b0d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_643b80db3a7141acb976827d9c2c20df",
"placeholder": "",
"style": "IPY_MODEL_4e01599c310c496c95601b03675a7ee5",
"value": "Processing: 100%"
}
},
"763bc24cd22a40368e6128c67b2293c2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_df8ef845fddc4fc389c51a039d059a9f",
"max": 4,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_68d1ae893aad4fddb62f06e49887add1",
"value": 4
}
},
"6f371e0b7bdb4df58eed5860873cc3e1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0d118690b6454227b0616e855cff37cc",
"placeholder": "",
"style": "IPY_MODEL_f03769a8644240e6bf5fd3ac261402b1",
"value": " 4/4 [00:08<00:00, 1.94s/it]"
}
},
"e1047847a0784564ac6a546b1e7bfb7b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": "hidden",
"width": null
}
},
"643b80db3a7141acb976827d9c2c20df": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4e01599c310c496c95601b03675a7ee5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"df8ef845fddc4fc389c51a039d059a9f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"68d1ae893aad4fddb62f06e49887add1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"0d118690b6454227b0616e855cff37cc": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f03769a8644240e6bf5fd3ac261402b1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d57c5efb591b442d9468b8191ab5c1d3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "VBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [
"widget-interact"
],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "VBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "VBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c33fb83b223a451aac54a2a6bf7a68e4",
"IPY_MODEL_df24ab74bc4c4e94bde4b4df10777e47"
],
"layout": "IPY_MODEL_906f7de280fd43759a3524b264e2e45a"
}
},
"c33fb83b223a451aac54a2a6bf7a68e4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ToggleButtonsModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ToggleButtonsModel",
"_options_labels": [
"Pipeline Plot",
"Hyperparameters",
"AUC",
"Confusion Matrix",
"Threshold",
"Precision Recall",
"Prediction Error",
"Class Report",
"Feature Selection",
"Learning Curve",
"Manifold Learning",
"Calibration Curve",
"Validation Curve",
"Dimensions",
"Feature Importance",
"Feature Importance (All)",
"Decision Boundary",
"Lift Chart",
"Gain Chart",
"Decision Tree",
"KS Statistic Plot"
],
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ToggleButtonsView",
"button_style": "",
"description": "Plot Type:",
"description_tooltip": null,
"disabled": false,
"icons": [
""
],
"index": 0,
"layout": "IPY_MODEL_ff0e0f64c4c44354a91e1ad16d671423",
"style": "IPY_MODEL_4576faea095e4d54acd720a7c04a110c",
"tooltips": []
}
},
"df24ab74bc4c4e94bde4b4df10777e47": {
"model_module": "@jupyter-widgets/output",
"model_name": "OutputModel",
"model_module_version": "1.0.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/output",
"_model_module_version": "1.0.0",
"_model_name": "OutputModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/output",
"_view_module_version": "1.0.0",
"_view_name": "OutputView",
"layout": "IPY_MODEL_3a17b9904f074605be7781706c573d88",
"msg_id": "",
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "",
"image/png": "iVBORw0KGgoAAAANSUhEUgAADHAAAACQCAYAAADavn0OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3jUlEQVR4nO3dd3yN5//H8ffJQCKECGJvtVdtQmyKoqhdq6hW7VXVUrSlilJqj6KltqKorfaetfceJYTESHL//sgv9zdHoqVN3EfO6/l4ePSc+9w55527XPd9rvv6XJfNMAxDAAAAAAAAAAAAAAAAAAAAAAAAiDMuVgcAAAAAAAAAAAAAAAAAAAAAAACI7yjgAAAAAAAAAAAAAAAAAAAAAAAAiGMUcAAAAAAAAAAAAAAAAAAAAAAAAMQxCjgAAAAAAAAAAAAAAAAAAAAAAADiGAUcAAAAAAAAAAAAAAAAAAAAAAAAcYwCDgAAAAAAAAAAAAAAAAAAAAAAgDhGAQcAAAAAAAAAAAAAAAAAAAAAAEAco4ADAAAAAAAAAAAAAAAAAAAAAAAgjlHAAQAAAAAAAAAAAAAAAAAAAAAAEMco4AAAAAAAAAAAAAAAAAAAAAAAAIhjFHAAAAAAAAAAAAAAAAAAAAAAAADEMQo4AAAAAAAAAAAAAAAAAAAAAAAA4pib1QEAAIgPwsPDFRwcrLCwMKujAIhDLi4u8vT0lKurq9VR8JKePn2qkJAQGYZhdRQAccjNzU2enp6y2WxWR8FLMAxDjx490pMnT6yOAuA1xXX66+vp06cKDg62OgaAOObu7i4PDw+u018zXKcDzsPDw0MJEiSwOgZeUlhYmIKDgxUeHm51FACSEiVKpIQJE1odwyk9ePCAcRoAgFjl6ekpd3d3q2MgnqOAA3Fu/vz5+vzzzxUUFBSr7xsSEqKgoCAlSZJEHh4esfregBXi+u90kiRJNHjwYDVo0CDW39vZ3LhxQ2vXrtX27dt18OBBnTlzRjdu3KCDFHAiKVKkUJYsWZQ/f36VKFFClSpVUvbs2a2OBUUMLjh8+LA2bNigXbt26ejRozp//rzu3btndTQAr4ibm5vSpEmjHDlyqFChQipTpowqVqyoZMmSWR0Nkh49eqQ//vhDmzdv1r59+3TixAldvnxZjx8/tjoagNeczWaTr6+vsmbNqvz586tkyZKqXLmyMmXKZHU0KGLii/3792vjxo3avXu3/vzzT50/fz7W+4wBOC53d3elTZtWOXPmVOHChVW2bFkFBAQoSZIkVkeDpIcPH2rTpk3asmWL9u3bp5MnT+rKlSsUbwBOxMvLS5kyZVLu3LlVrFgxlS9fXkWLFqVI2kFcvnxZ69at0/bt23Xo0CGdOXNGt27dYsIiwMEkTpxYGTJkUO7cuVW0aFGVL19eJUqUkJsbw/PiSosWLTR79myrYwAA4pkkSZLot99+U9myZa2OgnjMZvCNDnEsd+7cOn78uNUxAEjKlSuXjh07ZnWM19KDBw/0888/a+bMmdq2bRsdogCiyZMnj5o3b642bdooderUVsdxOmfPntXkyZM1Z84cXbhwweo4AByMm5ubKleurFatWqlevXrMKvmKGYahdevWadq0afr111/18OFDqyMBcCKFChVSixYt1LJlS6VIkcLqOE7n+PHjmjx5subOnaurV69aHQeAg0mQIIGqVaumNm3aqFatWgxse8XCw8O1cuVKTZs2Tb/99psePXpkdSQADiZVqlRq1KiR2rVrp/z581sdx+kEBgZq1qxZmjlzpvbs2WN1HAD/UooUKdSgQQO1a9dOb775ptVx4pWrV68qXbp0VscAAMRTffr00dChQ62OgXiMAg7EufTp0+vKlStycXFRmjRpYu19r127pvDw8Fh/X8Aqcfl3OvK906VLp8uXL8fqe8d39+7d08iRIzVmzBgFBgbGuI+fn5/SpUunZMmScZMRiOfCwsIUFBSka9eu6dKlSzEWcyVIkEAtW7ZU//79lTFjRgtSOpejR49q4MCBWrhwYYz/P9zc3JQxY0b5+fkpceLEcnFxsSAlgFflyZMnunv3ri5duqS//vorxn3SpUunXr166YMPPmBJ+zgWHh6uBQsWaPDgwTpy5EiM+3h5eSlz5sxKkSKFEiZMKJvN9opTAogPwsLCdP/+fV29evW5/R4eHh56//331a9fP/n5+b3ihM5n7969GjBggFasWBHj6+7u7sqcObNSpUqlxIkT0/4D8dzjx4919+5dXbhw4bl9rJkzZ9Ynn3yi1q1by93d/dUGdDJhYWGaPXu2vvzyS506dSrGfby9vZUxY0alSJFCCRIkoJ0G4jHDMBQcHKybN2/q/Pnzz115p0qVKvriiy9UqlSpV5zQ+dy+fVvDhg3ThAkT9ODBgxj3SZs2rdKlS6ekSZNybxJwAJFt6e3bt3X+/PnnFsaWK1dOAwcOVIUKFV5xwvhp9+7dKl68uCQpU6ZMypUrl8WJAACvuytXrpj3NL/55hv16tXL4kSIzyjgQJyLLOCI7YHjcfW+gFXi8u80/15enmEY+vHHH9W7d2/dunXL7rU8efKoTp06qlixoooWLapkyZJZExKApUJCQnTgwAFt2rRJy5Yt07Zt2+xeT5Qokfr27au+ffsyQDgO3Lt3T/369dOECRMUHh5ubnd1dVWlSpVUs2ZN+fv7K2/evMy0DzipmzdvaufOnVq3bp2WLFkSbXWerFmzauzYsapRo4ZFCeO3gwcP6oMPPtCOHTvstvv4+Ojtt99WtWrVVKpUKWXMmJHBYABi1YMHD7R//35t3LhRy5Yt0+7du+1e9/Ly0oABA9S1a1cGOsWB27dvq1evXpoxY4bd9gQJEqhKlSp66623VLZsWeXJk4fjDzghwzB0/fp17dixQ2vXrtWSJUuirc6TO3dujR8/XuXLl7coZfy2Y8cOffDBBzp48KDd9lSpUqlOnTqqWrWqSpYsqXTp0nGdDjihsLAwHT9+XFu3btXKlSu1atWqaIOQGzVqpFGjRjHBYhwICwvT+PHj1b9/f927d8/utUKFCuntt99WhQoV9OabbypJkiQWpQTwT8LCwnT69GmzLf3tt98UHBxst8/bb7+t77//nong/qOlS5eqbt26kqRBgwbps88+szYQAOC1N3r0aHXt2lWSNGvWLDVv3tzaQIjXKOBAnKOAA3gxFHA4jlu3bqlVq1b67bffzG1ubm5q3ry5OnXqxNKmAGJ07tw5TZgwQRMmTND9+/fN7fnz59fcuXOVJ08eC9PFL5s3b1bz5s116dIlc5ufn586d+6stm3bKlWqVBamA+CIwsPDtWnTJo0ePVpLly61e61t27YaPXq0EidObFG6+CU8PFzDhg3T559/rtDQUHN7yZIl1b17d9WpU4fCOgCv1IkTJ/TDDz9oypQpdgMmihcvrjlz5ihr1qwWpotfVq1apZYtW+rmzZvmtgwZMqhr165q1aqVfHx8LEwHwBGFhYVpzZo1+u6777R69Wq717p06aJhw4YxKUYsCQ0N1eeff66hQ4farWBaoUIFde3aVW+99RaFdQCiuXfvnmbNmqVRo0bp7Nmz5nYfHx9NmTJF9erVszBd/HL58mU1a9ZMmzdvNrclTJhQrVu3VqdOnZQ3b14L0wH4Lx48eKA5c+Zo5MiROn78uLk9SZIkGjdunFq0aGFhutfbhAkT1LFjR0nSlClT1LZtW4sTAQBed3379tWwYcMkSevWrVPFihUtToT4zMXqAAAAOJJ9+/apSJEidsUbDRs21MmTJzV9+nSKNwA8V5YsWTRs2DCdO3dO3bt3N296Hz58WMWLF9fixYstTvj6MwxDY8aMUcWKFc3ijcSJE+vrr7/W2bNn9cknn1C8ASBGLi4uqlChgpYsWaJ9+/YpICDAfG3q1KkqXbp0tBU68PKCgoJUp04d9evXzyzeyJ07t3777Tdt27ZNDRs2pHgDwCv3xhtvaPTo0Tp79qw6duxozia+a9cuvfnmm1qzZo3FCV9/hmFoyJAhqlGjhlm84e3trdGjR+v06dPq3r07xRsAYuTq6qrq1atr1apV2rZtm0qUKGG+Nnr0aAUEBOj69esWJowf/vrrL1WpUkVff/21WbxRqFAhbdy4UevXr9fbb79N8QaAGHl7e6tTp046ceKEJkyYIF9fX0nSnTt39M4776hv3752qyPj3/njjz9UpEgRu+KNVq1a6cyZMxo/fjzFG8BrzsvLS+3atdORI0f0448/misYBQUF6b333lOnTp3sJsLBi4u6ml/atGktTAIAiC+inltYdRBxjQIOAAD+3/r161WuXDlzlZLUqVNr+fLlmjdvnrJkyWJxOgCvCx8fH40YMUJ79uxRvnz5JEkPHz5U/fr1NX78eIvTvb4Mw1CfPn3UpUsXhYWFSYqYJfLo0aPq27evPDw8LE4I4HVRuHBhrV+/XlOmTDFX3Th06JBKlSqlo0ePWpzu9XX79m0FBARo+fLlkiKKZj799FMdOHBANWrUMAdMA4BVUqdOrR9++EHbtm1T9uzZJUmBgYGqUaOGfvrpJ4vTvb7Cw8PVoUMHffbZZ+a2mjVr6vjx4+rcuTOFewBeWKlSpbRt2zaNHj3aXHVjx44dKl26tN2s73g5V65cUdmyZbVx40ZJEStNf/3119q9e7fKly9vbTgArw03Nzd16NBBx44dU8OGDc3tw4YNU/PmzfX06VML073elixZosqVK+vWrVuSpIwZM2rjxo2aPn260qVLZ3E6ALHJ1dVV7733no4dO6aWLVua28eNG6d33nlHjx49sjDd64lBtgCA2EZxIF4lCjgAAJC0efNm1axZUw8fPpQUccNw//79qlmzpsXJALyuChYsqF27dqlZs2aSIgoQPvzwQ02cONHiZK+n3r17a/jw4ebzTz75RGvWrFGmTJksTAXgdWWz2dS2bVvt3r1bOXLkkCRdu3ZNFSpU0IkTJyxO9/oJDAxU5cqVtW/fPklS8uTJtXr1ag0ZMoSBuwAcTsmSJbV3717VqVNHkhQWFqYWLVpo7ty5Fid7/RiGoQ4dOmjy5MmSIs6vX3/9tZYtWyY/Pz+L0wF4Hbm4uKhz587atm2bMmTIIEk6d+6cAgICdPHiRYvTvX6uX7+ugIAAHT9+XFJEMeOmTZvUt29fVtwA8K/4+vrql19+0ZgxY+Tq6ipJmjNnjt577z1z0h28uGXLlqlhw4Z68uSJJKlKlSrav38/BXZAPOft7a0ZM2Zo2rRpZt/psmXL1KBBAwriXtK1a9fMxwyyBQDEhshzi6enp5ImTWpxGsR3FHAAAJzesWPH9Pbbb5uzWtSuXVvr169nlgYA/5mHh4dmzZqlPn36mNs+/PBDc3ZyvJgxY8bo22+/lRQxKGzixIn66quvzJuEAPBv5c6dW9u2bVPRokUlSbdu3VL16tXNWQ/xz548eaJ69erp4MGDkiJulG3dulWVK1e2OBkAPF/SpEm1cOFCffDBB5IiChHee+89bd682eJkr5dBgwZpypQpkiJmEv3555/Vt29fVl0C8J8VKVJEO3bsUJ48eSRJly5dUo0aNXT//n2Lk70+goODVbt2bZ0+fVqSlDVrVm3fvl2lS5e2OBmA153NZtPHH3+sxYsXmysmzZ07V71797Y42etl9+7datSokUJDQyVJzZs314oVK+Tj42NxMgCvSuvWrbVy5UpzlegVK1aoY8eOMgzD4mSvj8hZ0t3c3OTr62txGgBAfBB5bkmTJg393IhzFHAAAJzagwcPVK9ePd27d0+SVKNGDS1YsECJEiWyOBmA+CJyFtpevXpJksLDw9W0aVPzBjr+3ubNm9W9e3fz+fjx49W+fXsLEwGIb3x9fbVmzRoVLFhQknT+/Hk1btyYmSNfUO/evbVx40ZJUsqUKbVhwwblzp3b2lAA8AJcXV31ww8/qF27dpKkp0+fqkGDBnZLpOP5li9froEDB0qK+M7z008/qXHjxtaGAhCvpE2bVuvXr1f27NklSX/++adatWrFgLYX1LFjR+3Zs0eSlCFDBm3YsEFZsmSxOBWA+KR27dpasGCBOcnOyJEjNWfOHItTvR5u376td955RyEhIZKkxo0ba8aMGXJ3d7c4GYBXrWLFilq+fLlZEDd16lRNnDjR4lSvj8hZ0v38/OTiwhBIAMB/ExISosDAQEms7IRXg6sXAIBT6969u06cOCFJKlCggObNm2cuVQoAscVms2nYsGFq2LChJCkoKEjNmjUzZ9dCzO7du6fmzZubg6g/+eQTdejQweJUAOKjZMmSacWKFeYKbOvXr9eIESMsTuX4Vq9erdGjR0uSEiRIoF9//VU5c+a0OBUAvDibzaYffvhBVatWlRSxEhODg//ZjRs31Lp1a/P5sGHD1KhRIwsTAYivUqdOrZUrVypZsmSSpMWLF5sr/+D5fvnlF82cOVOSlDhxYv3222/KmDGjxakAxEe1atXSuHHjzOcdOnTQxYsXLUzk+AzDUIcOHXT58mVJUpkyZTRjxgxWmwacWEBAgKZPn24+79atm44fP25hotdDaGiobt68KYlBtgCA2BFZGCjJvGcMxCUKOAAATmvjxo2aPHmyJMnLy0sLFy6Ul5eXxakAxFc2m03Tpk1Tjhw5JEm7du3S2LFjLU7l2Pr166dLly5JiujAHjx4sMWJAMRn6dKl09y5c83lcD///HOdOXPG4lSOKzg42G5FpBEjRqhkyZIWJgKAf8fNzU0///yz0qVLJ0las2aNOegVMevWrZtu374tSapTp4569uxpcSIA8Vn27Nnt2uWePXvq+vXrFiZybHfv3lWnTp3M55MmTVK+fPksTAQgvmvfvr2aN28uKWLioo8++sjiRI5t8eLFWrRokaSIVWHnzZtnzrwPwHk1adLEvIZ79OiR2rdvz+QS/+DGjRvmMWKQLQAgNkRdnZviQLwKFHAAAJxSeHi4unbtaj7/5ptvlD17dusCAXAKXl5e+vHHH83BwQMGDNBff/1lcSrHdPToUU2YMEFSxGyRzEIG4FUoV66cunXrJkl6/PixevfubXEixzVixAhzVs1KlSoxQAPAay1FihTmBA+S1LdvXz18+NDCRI5r+/btmjNnjqSI4zZp0iTz+w0AxJXatWubK//cv39f/fv3tziR4xo0aJBZZFe/fn01bdrU4kQA4jubzaaxY8eag2eXL1+u1atXW5zKMT1+/Niu+HncuHEMDANgijpe4Y8//tD8+fMtTuTYGGQLAIhtUVfg4NyCV4ECDgCAU1q4cKEOHjwoSSpSpIg6dOhgcSIAzqJUqVJ2gw5GjBhhcSLHNHDgQIWHh0uSPv30U2XKlMniRACcxRdffCE/Pz9J0qJFi7R//36LEzmewMBAffvtt5IkV1dXjR07lsG7AF57NWrUUL169SRJ169f1w8//GBxIsf02WefmY+HDBmiVKlSWZgGgDP55ptv5O3tLUmaPn06q+XF4OrVqxo/frwkycPDQ9999521gQA4DW9vb7OfQIpY1ZSZ46ObPn26zp07JyliMoyGDRtanAiAI/Hw8NDo0aPN5wMGDDDvkyG6qAUcrMABAIgNnFvwqlHAAQBwSsOHDzcff/XVV3Jx4ZQI4NX54osv5O7uLkn64Ycf9ODBA4sTOZazZ89q4cKFkqTUqVOrS5cuFicC4Ey8vLzsZvSNOgABESZPnqz79+9Lklq3bq1cuXJZnAgAYseXX35pFqR99913evr0qcWJHMv+/fu1bt06SVK2bNn0/vvvW5wIgDPx9fU1Zy0PDw/XqFGjLE7keMaOHavHjx9Lkjp16qT06dNbnAiAM2ncuLEKFCggSdq1a5f++OMPixM5lvDwcLvJnIYOHcpkGACiqVGjhsqWLStJOn78uFasWGFxIsfFLOkAgNjGuQWvGqNVAQBO58CBA9q9e7ckqWDBgqpatarFiQA4m/Tp06t58+aSpHv37rEM8jOmTJliztDWuXNneXp6WpwIgLNp06aNUqRIIUlasGCB/vrrL4sTOQ7DMDRp0iTzea9evSxMAwCxK3fu3Hr77bclRcy2xUAJe1Hb/x49esjNzc3CNACc0UcffWT2EcyaNUvBwcEWJ3IcT58+1dSpUyVJ7u7u6tatm8WJADgbFxcX9e7d23we9doR0oYNG3T69GlJUsWKFVW0aFGLEwFwRDabTX369DGfT5w40cI0ji3qLOkMsgUAxAZW4MCrRgEHAMDp/Pzzz+bjDh06MMMNAEt06NDBfBy1XXJ2hmFozpw5kiRXV1e1bdvW4kQAnJGHh4datmwpSXry5IkWLVpkcSLHsXv3brsBBzlz5rQ4EQDErg8++MB8zHX6/4SGhmrevHmSJE9PT7MgHQBepeTJk6tRo0aSpPv37+u3336zOJHjWL9+vW7evClJevvttxloAMASDRo0kI+PjyRp8eLFFNpF8ey9SQB4nho1apgrqa1evVp37tyxOJFjijpLOte+AIDYQHEgXjUKOAAATmfZsmWSImYDatiwocVpADir4sWLK0uWLJKkjRs36v79+xYncgxHjhzR+fPnJUUMDE6dOrW1gQA4rSZNmpiPf/31VwuTOJbIa2nJ/hgBQHxRuXJlcxWmlStX6unTpxYncgzbtm0zB43UqlVLSZIksTgRAGfVuHFj83HUa1Nnx3U6AEeQMGFCvfPOO5Kk4OBgrV+/3uJEjiE8PFzLly+XFFEMXbt2bYsTAXBkrq6uZtFyaGioVq5caXEix8QgWwBAbIssDvT09FTSpEktTgNnQAEHAMCpXLt2TcePH5cklSxZUr6+vhYnAuCsbDab3nrrLUkRHbBbtmyxOJFj2LBhg/m4Zs2aFiYB4OyKFCmiVKlSSZI2b96ssLAwixM5hqjtdOR5DADiEzc3N1WrVk2S9ODBA+3du9fiRI6B63QAjqJ8+fLy9PSUJAYGRxHZTru6uqpq1aoWpwHgzKL2FUS9hnRmx44dM1dJqlixojw8PCxOBMDRRf3eTVsas8gCDjc3N8Z8AABiReS5JU2aNLLZbBangTOggAMA4FR2795tPvb397cwCQDYt0NR2ydntmvXLvNx2bJlLUwCwNm5uLiY7dD9+/d14sQJixNZLywszBzInDVrVmY2AxBvRb1Oj3p96syiHgf6UwBYKWHChCpRooQk6fLly+bsiM4sKChIf/75pySpUKFCrJIEwFJcS0fHtTSAl1WyZEm5ublJoi19nsjvAX5+fnJxYfgjAOC/CQkJUWBgoCRWdsKrwxUMAMCpRN7IkiJuZgGAlaK2Q0ePHrUuiAOJbKddXV2VL18+i9MAcHZR2+mo15HO6ty5c3r06JEkqXDhwhanAYC4w3V6dJHnwaRJkypz5szWhgHg9LhOtxe54rTEdToA6/n6+ipdunSSaKMjRT0OtNMAXoSHh4feeOMNSRHXeqGhoRYnciyhoaHmykYMsgUAxIaoE4SkSZPGwiRwJhRwAACcyvnz583H2bNnty4IAChi9vLIpRejtk/OLPI4ZMyYUQkTJrQ2DACnlyNHDvMx7TTX0gCcB+2/vbCwMF28eFFSRPvP8vEArEY7bY/rdACOJrKdvnPnjoKCgixOYz3aaQD/RmR78fTpU12/ft3iNI7lxo0bMgxDEoNsAQCx4+rVq+ZjigPxqlDAAQBwKrdu3TIf+/n5WZgEACR3d3f5+PhIkm7fvm1xGuuFhobq7t27kqTUqVNbnAYA7NuiqNeRzirqMaCdBhCf+fj4yNXVVRLX6ZJ09+5dhYeHS6IvBYBjSJUqlfmYdprrdACOh/4Ue7TTAP4N2tLnY5AtACC2RV2Bg3MLXhUKOAAATiU4ONh8nDhxYguTAEAELy8vSfbtk7MKCQkxH9NGA3AEUdsi2mmupQE4D5vNZrZztP+0/wAcT2RfiiQ9fPjQwiSOgXYagKOhP8Ve1GPg4eFhYRIArxPa0ueLWsDBChwAgNjAuQVWoIADAOBUIpfSlCQXF06DAKwX2RZFbZ+cVdRjEDnjMQBYKer1Iu0019IAnAvX6f9D+w/A0XCdbo/+FACOJmpbRDv9v2Pg4uIim81mcRoArwva0udjlnQAQGzj3AIrcLcFAAAAAAAAAAAAAAAAAAA4tKizpDPIFgAQG1iBA1aggAMAAAAAAAAAAAAAAAAAADi0qLOkM8gWABAbKA6EFSjgAAAAAAAAAAAAAAAAAAAADo1BtgCA2BZZHOjp6amkSZNanAbOggIOAAAAAAAAAAAAAAAAAADg0CILONzc3OTr62txGgBAfBB5bkmTJo1sNpvFaeAsKOAAAAAAAAAAAAAAAAAAAAAOLXKWdD8/P7m4MPQRAPDfhISEKDAwUBIrO+HV4ioGAAAAAAAAAAAAAAAAAAA4rNDQUN28eVMSg2wBALEjsjBQiliBA3hVKOAAAAAAAAAAAAAAAAAAAAAO68aNGzIMQxKDbAEAsePq1avmY4oD8SpRwAEAAAAAAAAAAAAAAAAAABwWg2wBALEt6gocnFvwKlHAAQAAAAAAAAAAAAAAAAAAHBaDbAEAsS1qcSCrO+FVooADAAAAAAAAAAAAAAAAAAA4LAbZAgBiG6s7wSoUcAAAAAAAAAAAAAAAAAAAAIfFIFsAQGyLuroTxYF4lSjgAAAAAAAAAAAAAAAAAAAADotBtgCA2EZxIKxCAQcAAAAAAAAAAAAAAAAAAHBYDLIFAMS2yOJAT09PJU2a1OI0cCYUcAAAAAAAAAAAAAAAAAAAAIcVOcjWzc1Nvr6+FqcBAMQHkcWBadKkkc1mszgNnAkFHAAAAAAAAAAAAAAAAAAAwGFFDrL18/OTiwvDHgEA/01ISIgCAwMlsbITXj2uZAAAAAAAAAAAAAAAAAAAgEMKDQ3VzZs3JTHIFgAQOyJXdpIiVuAAXiUKOAAAAAAAAAAAAAAAAAAAgEO6ceOGDMOQxCBbAEDsiFzZSaI4EK8eBRwAAAAAAAAAAAAAAAAAAMAhMcgWABDboq7AwbkFrxoFHAAAAAAAAAAAAAAAAAAAwCExyBYAENuiFgeyuhNeNQo4AAAAAAAAAAAAAAAAAACAQ2KQLQAgtrG6E6xEAQcAAAAAAAAAAAAAAAAAAHBIDLIFAMS2qKs7URyIV40CDgAAAAAAAAAAAAAAAAAA4JAYZAsAiG0UB8JKFHAAAAAAAAAAAAAAAAAAAACHxCBbAEBsiywO9PT0VNKkSS1OA2dDAQcAAAAAAAAAAAAAAAAAAHBIkYNs3dzc5Ovra3EaAEB8EFkcmCZNGtlsNovTwNlQwAEAAAAAAAAAAAAAAAAAABxS5CBbPz8/ubgw5BEA8N+EhIQoMDBQEis7wRpczQAAAAAAAAAAAAAAAAAAAIcTGhqqmzdvSmKQLQAgdkSu7CRFrMABvGoUcAAOqlWrVrLZbNH+eHh4qFChQho1apTCwsKsjmlnxowZstls2rJli9VRADio06dPq0uXLnrjjTfk5eWlhAkTKnPmzGrdurUuXrwoSdq4caNsNptmz579SjL927aLNg9AfEMbDQCvt/3796tly5bKnDmzEiVKpKRJk6po0aIaMmSI7t2796/fNyAgQNmzZzefZ86cWZUrV46NyNG0atVKbm5u5vOBAwfG2DcS9U/Pnj3jJMu/9arPlQDil7hqy//JP7Xtz54L/utn/VPbfuTIkVj5rNjy7PkJAKJ63v28yD/Zs2f/V/0UsXldGXldffny5f/8XufPn5fNZtOQIUP+83sBwL8R2e7Wq1fvufts3brVbIelf98OBgQEyGazqVu3bs/d56effpLNZlPmzJlf6r1fxqZNm/Tuu++a3xMSJ06sfPnyqV+/fnr06FGcfKbNZtP7778fJ+8N/Bs3btyQYRiSGGSL6JYvXy6bzaaUKVPq8ePHL/Qz//ZeYkx91smSJVPevHnVv3//OGuX/6unT59q4sSJ8vf3V/LkyZUoUSJlzpxZTZo0iXYMYrMf6GU92wcTGhqqxo0by8PDQ4kTJ5YUt/co4FwiV3aSKA6ENSjgAByYq6urrl27Zvdn586dqlevnnr27KmOHTtaHTFWHDx40Ow8ARB/nT59Wm+++aZ27dqlUaNG6c8//9TBgwc1aNAgrVmzRmXKlNGtW7dUunRpXbt2TQ0aNLA68murXr16GjhwoNUxALxGaKNfHdpoAHFh3LhxKlasmB48eKBJkybpxIkT2rVrl9q3b68pU6aoUKFCOnXqVKx81u7duzV//vxYea8XtW/fvmj9I5F/BgwY8EqzAEBceZVt+auydOnSGAey+fv7P7ddv3btmnLlyvXqwwLAfxDT/bzIPzt27FCjRo107do1lShRwuqoABAveHl5afny5XazJkc1efJkc5CnJPXs2VPXrl37VwPzvLy8NHPmzOcOyH32s2LbL7/8ogoVKihhwoSaO3euTp8+re3bt6tp06YaMWKE6tatG2efDTgSBtni70yYMEGFChXSX3/9pUWLFr2Sz4zaZ719+3a1bNlSX3/9teXFb6NHj1ZAQIDdtqCgIFWoUEF9+/ZVrVq1tHnzZv35558aP3687ty5o/Lly2vkyJHWBH7G6NGjdeXKFfP56tWr9csvv6h37946fvy4JGvuUSB+inotybkFVmDKIMDB+fn5RXteoEABXblyRVOmTNGQIUOUKlUqi9LFjs2bN1sdAcArMHXqVN2/f19LlixR6tSpze25cuVSrly51K5dO+3cuVO1atWK1vbhxRmGoS1btqhgwYJWRwHwGqGNfjVoowHEhT/++EOdO3dW9+7dNXz4cLvXcuXKpbp166p48eKqX7++Dhw4IBeX/zafS8qUKf/Tz//bz+T8AyA+e9Vt+avyvH7fBAkS0K4DiHf+qV3z8PB4RUkAIP4rXLiwjh07pqlTp6p///52r927d0/z589XtWrVtHjxYkkRRRheXl7/6rMqVKiglStXasGCBWrevLndaydPntSmTZtUr1497du379/9Mv/gu+++U65cuTRr1ixzW/r06VWgQAF5eXnpl19+0YULF5QpU6Y4+XzAUTDIFs9z8eJFrVy5UtOmTdP06dM1ceJENWnSJM4/N2qftZ+fn3Lnzq3Nmzeb5x6rxNQX8/HHH2vv3r3asWOH3T3KrFmzqnr16mrcuLE+/fRTNWjQQBkzZnyVcaPx9vaWt7e3+fz27duSpCpVqihDhgySrLlHgfgpanEgqzvBCq9HLz+AaAoVKiTDMHTx4kVz28aNG1WlShUlTZpUiRIlUs6cOTV48GCFhoZKklq0aBFtibNx48bFuNRx8eLF9fbbbz/38/ft26eyZcsqUaJESpUqlT7++GOFhIRE22/RokUqXbq0EidOLE9PT+XLl08//PCD+XqrVq3UuXNnSRHLcLZq1UqSdOfOHX3wwQdKly6d3N3dlSZNGjVo0EBnzpx5uQMFwGFEthHBwcHRXitevLgOHjyoWrVqRVsaPurSlbVr11aSJEnk6+urPn366PHjx+ratatSpUql5MmTq3Hjxrp//775vjabTb169dKoUaOUOXNmJUyYUHnz5tWSJUv+Nuvhw4dVp04dpU+fXh4eHipQoICmTZv2j7+jzWZT//799dVXXyl9+vTy9PRUQECALl26pCVLlihfvnzy9PRUoUKFtHXrVvPnWrVqpZQpU2r//v0qXbq0PDw8lDJlSnXt2lVPnjyxe/9nZ2zYsmWLbDabZsyYofPnz8vFxUW3b9/WF198IZvNpvPnz7/w75Q5c2a1atVKvXv3VpIkSaKdGwDEX7TRtNEAXl9Dhw6Vr6+vvvzyyxhfT5Uqlb766isdPnxYy5YtM9vuFStWKF++fEqQIIG577Nt8rx586K937PLk9tsNg0cOFBjx45Vjhw55OHhody5c+uXX36x+7l/6rP4ryLPUatWrVKnTp3k5+enJEmSyN/fX/v377fbd/PmzSpfvry8vLyUKlUqvfPOO+bsXZHGjx+v/PnzK1GiRPLy8lLZsmW1YsUKu33Onj2rGjVqyNPTU8mTJ1fz5s11586daNkuXryopk2bKnPmzObv/s033yg8PNzcJyAgQAEBARo9erR8fHwsn6kNwKv1b9vyffv2qVmzZkqRIoWSJUumGjVq6Ny5c3Y/u2TJEvn7+8vHx0dJkiRRQECA3fXuv7V+/XoFBAQoSZIkSpQokfLkyaMRI0bIMAxJEe3ayJEjdeHCBfNc8bJatWqlzJkz6+DBgwoICJCXl5fSpEmjDh062PVFh4aG6uuvv1aOHDmUKFEiZc+eXZ9//rnd9frNmzfVrl07pU2bVu7u7vLz89N7771nN6ujJP3888964403lDBhQmXLlk1jx46NMds/Hdfz58/LZrNp7Nixql69uhIlSqQ//vjjpY8BgPghav/J/fv3lTVrVlWpUsVun59++kk2m00LFix47vtkzpxZzZs319SpU5UtWzYlSpRIb775pg4ePKgtW7aoePHi8vT01BtvvBFj/8q5c+dUvXp1JU6cWN7e3mrevLldX82jR4/Up08fZcmSRe7u7kqZMqWqV6/+j4OSDx48qDp16sjHx0cJEiRQlixZ1L17dz148MDcZ+DAgbLZbLpw4YJq1aolb29v+fr6qlGjRuagrEiTJk1S/vz55eHhoUyZMqlz5866d++e+XpISIj69OmjPHnyyMPDQ2nSpFHHjh119+7daJ+3ceNGZc2aVTly5Pjb3wHA68XFxUV16tTRlClT7L5bSxHtqYuLi6pWrWpui2wTLl++LOnFrzMlycfHR+XLl9fEiROj5ZgyZYqyZ8+uAgUKRHtt0qRJKly4sDw8PJQ0aVIVLVrUbrbwZcuW2fW1R6pataoyZsxotmkhISF68uRJjP0nnTt31tatW+2KNw4fPqyaNWvK29tbyZMnV9WqVbVz507z9fDwcH399dfKlSuXEiRIoOTJk8vf31/r1q2LfqCjoO2F1Rhki+eZNGmSvLy81KBBA73//vvatGmTTpw4YbdPbI1x+yc2m03Jkye32/ai/RH79+9XzZo1lSxZMiVIkEDZs2fXp59+ate3cfXqVbVs2VLp0qVTwoQJlSZNGjVv3tz895E5c2YtWrRImzZtMu9PXr58WbNnz9YHH3wQ4wRzNptNEyZM0JUrV55bvPGi3xN+++03lS1bVj4+PvL09FSePHn07bffmn1FkjRy5EjlzZvX/E5SpkwZLVu2zHy9VatWcnNzMx9HjiP09/eXzWYzf8+o9yjCwsI0bNgwFSxYUF5eXvL19VXTpk3N876kv70vAufF6k6wGgUcwGvqzz//lIuLi7kE/cWLF1W9enV5e3tr+/btOnHihD777DMNGjRIQ4cOlSTVqFFDZ86csbtAWbNmjTJmzKj169eb2wIDA7Vv3z7VrFkzxs++d++eqlWrpnv37mnt2rXavHmzUqRIEe0G444dO9SgQQMVKVJE+/fv15EjR9S6dWt99NFHZkfE6NGj1bRpU0kRFfOjR4+WJDVr1kxLlizRzJkzdfbsWS1evFhnzpzRW2+9pbCwsNg5iABeqVq1akmSypUrp3HjxunChQsv9fPdunXTe++9pwMHDqh58+b65ptvVLlyZaVKlUrbtm3T2LFj9csvv0S7sT5v3jwdPHhQy5cv1/bt25U2bVo1bNhQR44cifFzzp07J39/f125ckVz587VgQMH1KBBA7Vt21aTJk36x5xz587VjRs3tG7dOi1atEi7du1Sw4YNNW7cOM2cOVNbt27VkydP1Lp1a7ufu3fvnjp37qzBgwfr0KFD6t27t8aMGaPPP//8hY9RhgwZzC/JPXr00LVr15QhQ4aX+p22bt2qq1evavfu3erUqdMLfzaA1xttNG00gNdTWFiYNmzYoKpVq/7tDYfatWvL1dVVv//+u7ltwIAB+uqrr3T69GlJEQMcunfvrjp16ujgwYOaPHmyxo8fr2PHjv1jjnnz5mnXrl1m25oiRQq1bNnS7Px+kT6L2NK7d29lzJhRf/zxh3799VedPHlS7733nvn6zp07VblyZeXOnVvbt2/XqlWrdPv2bVWqVEmBgYGSpK+++kofffSR6tevr/3792vr1q1Kly6dateubfafhIWFqVatWjpy5IgWL16sXbt2qXjx4urZs6ddnsDAQPn7+2vXrl2aMGGCjhw5os6dO+uzzz6LNkvoxYsXtWrVKm3cuDHWjwsAx/Vf2vIOHTqoQoUK2rVrl2bNmqWNGzeak+VIEQMP6tWrZ7aLkf24lStX1sGDB/915j/++ENVq1aVj4+PNmzYoEOHDql58+bq1auXWaixaNEi+fv7K3369Lp27Vq09vFFBQUF6cMPP1Tfvn116NAhffzxx5o0aZLdAIoePXro66+/1ueff66jR49q6NChGjlypLp27SpJevLkiSpVqqTVq1dr3LhxOnHihKZOnarNmzerYsWKevz4saSIAuzmzZurUKFC2rt3r+bPn6/169drzZo1dple5riOGTNGlStX1okTJ1S0aNF/dQwAxC9JkybV7NmztWHDBk2ZMkWSdOvWLXXt2lVt27ZVgwYN/vbnd+zYoTVr1ujXX3/VunXrdPXqVbVo0UKffPKJRo4cqX379snPz0+tW7eONlFHp06d1LJlSx08eFBjxozRggUL9MEHH5ivd+vWTd9//71Gjhyps2fPas2aNQoPD1f16tXtBuhGFRwcrEqVKunu3btav369Tp8+rTFjxmjq1KlmOxxVy5Yt1bJlS+3fv1/ffvut5s2bpy+++MJ8fdSoUerUqZPatWunQ4cOafLkyVqwYIHdLMqNGjXS2LFj1b17dx09elSTJk3SsmXLVKtWLbvBYZI0aNAgTZs2TZs2bfrb4wrg9fPee+/pwoULWr16td32yZMnq2HDhkqUKNHf/vyLXGdG/awtW7bY9ZE8ffpUP/74o1q0aBFt/19++UUdOnRQgwYNdPToUe3du1fly5dXo0aNzJnRa9eurY4dO6pr1666ceOGJGn69Olat26dZs+ebQ4ArlWrls6cOSN/f3/Nnz8/xokjIkX2NSdIkEDr16/X1q1blSRJElWuXNmcKHP48OHq16+fevfurdOnT5sFILVq1dKpU6ee+960vbAaK3AgJqGhoZo2bZqaN2+uxIkTq0GDBvLx8bG7vxabY9ye59GjR/rpp5+0atUqffrpp+b2F+2POHXqlPz9/RUUFKQVK1bo2LFj6tmzp0aOHKl27dqZ79esWTPt3btX8+bN0+nTpzV//nwdP37cHN+3e/duZc6cWaVKldK1a9fUqFEjbdq0yezLfp7kyZPLx8fnua+/yPeEU6dOqW7duipcuLC2bdumP//8Uz169NBnn31mjgX88ccf1bNnT/Xo0UNHjx7Vzp07Vbp0adWtWzfGovHRo0fru+++kyQtXbrUrh14Nl+/fv3UtGlTHTx4UPPmzdOhQ4cUEBAQ7TvRs/dF4Nyi/p2iOBCWMIA4li5dOkOSkS5dutfifR1Fy5YtDVdX12jbHzx4YMyYMcNImDCh0apVK3P7o0ePjOPHjxuBgYF2+xcrVswoUaKEYRiGcfv2bcPFxcWYOXOmYRiG8fTpUyNp0qTG8OHDjUSJEhkhISGGYRjGokWLDEnGxYsXY8w2bdo0Q5KxefNmu+1169Y1JBl//PGHmfXo0aNGcHCw3X4pU6Y0GjVqZD5v27at8WxzdPHiRePcuXN228aNG2dIMo4dOxZjrtddXP6dju//Xv5O7dq1jXHjxhkXLlwwDMMwqlWrZkgyJEX794K49+OPPxp+fn7m/4N06dIZTZs2NebOnWs8efLEMAzD2LBhgyHJmDVrlmEYhjF9+nRDkjFkyBDzfW7cuGFIMipWrGj3/rlz5zbq1atnPpdk+Pn5GU+fPjW3nT171pBkfPLJJ3bvH9l2derUyXBzczMuX75s9961a9c20qVLZ4SHh8f4c5GflzNnTnMfwzCMGjVqGJLMv4OGYRjDhg0zJBn37t0zDCOizZdkLFu2zO4zy5cvb6RJk8bu/du2bWu3zx9//GFIMqZPn24YhmFcunTJkGQMGDDA3OdFf6dMmTIZHh4eRlBQkIFXJ0uWLIYkI1WqVFZHeeXWrVtntGnTxli8eLERFBRk3Lt3z2wfqlatanU8p0MbHYE2GlHt3r3b/Dfx0UcfWR3nlRs4cKDRv39/Y8eOHUZYWJgxefJk83hMnjzZ6ngwDOP69euGJKN///7/uG/q1KmN2rVrm23kZ599Zvd6uXLljGzZstm1k7du3TLc3d2NbNmymdsyZcpkVKpUyXwuyciSJYtde75gwQK7tvNF+iwMI3pfyIABAwxJhqenp5E4ceIY/zx48MAwjP+do1q0aGH3GZ06dTIkme1n3bp1jQwZMtj9nseOHTOaNm1q7N6923jy5Inh7e1tNGjQwO59njx5Yvj5+Rk1a9Y0DMMw1q9fb0gy+1gide3a1e5c+e233xqSjJ07d9rt9/HHHxsJEyY07t+/bxhGxHlFknHmzBkDjiFZsmSGJOONN96wOsort2TJEqNDhw7G8uXLjeDgYOP8+fNm+x+1Tw+xIzbb8lq1ahkpUqQwn+fLl8/ImzevXZsXHBxspEqVymjatKm5LVOmTIarq+tz21oXFxe7c0GNGjWMNGnSmN8TItWvX9/w9vY2zwmVKlUyMmXKZLfPP31W8+bNzX0jr8XXrVtnbgsPDzeSJk1q1K9f3zCM/52rPv30U7vPGT9+vPHBBx8YYWFhxi+//GJIMpYvX263z7JlywxJxvz58w3DMIz33nvPSJw4sV1/9uPHj41UqVLZnZ9e5LieO3fOkGT4+/sbiH2///672S69yL+d+KZXr17GF198Yezbt88IDw83vvnmG/N4LFy40Op4Tud59/OiiqmfYuDAgYa3t7dx+fJlo3HjxkbOnDnNa1vDiN4HYxgRbai3t7fdfh07dox2zy6y3Tt48KBhGP+7rv7+++/tcr3//vuGu7u7ea187do14+TJk3b7rFixwpBkrFy50jCM/7VvgwcPNgwj4l7jqVOnjJs3b9r9XMOGDY3UqVObzyMzTJ061W6/fPnyGW+++ab5XilTpjSaNWtmt8+CBQuMli1bGvfu3TP27NljSDKGDRtmt8/ChQsNScbvv//+t5+HV6Ndu3Zmu3To0CGr47xSQUFBxttvv21MnjzZuHr1qmEYhlG0aFFDkuHi4mJxuvihZcuWRvny5Q3DMIwcOXIYderUMV/btWuXIcnYtGmT2fYaxv/ahEuXLpnv8U/XmYYR8V29ZcuWxsOHD42kSZMaXbp0MV+bN2+eYbPZjPPnzxsDBgywu+4NDAw0Dh06ZISFhZnbHj58aEgy+vTpY24LDg42cufObdSvX9+4du2akTx58mjXtU+ePDF69eplJEqUyJBk2Gw2I2/evEanTp2MTZs22e3btWtXw8PDw+xrMAzD+Ouvv4zGjRub7fjt27eNo0eP2v3c0aNHDUnG+PHjzW1R+7tpe63Rs2dPsy2Neg3hLGrWrGn88MMP5ril999/3zwe+/fvtzYcHMb8+fPtrnsNwzC6detmpEiRwnj06JFhGLE/xi2mPmtJhru7u/H5558boaGh5r4v2h/RsWNHI2HChMZff/1lt1+PHj0MFxcX4/r164ZhGIaHh4fxwQcf2O1z9epVY9++feY5J1u2bOZ50jAMY+jQoYYk4/Tp0/9wNP+nfPnydv1AL/I9IfJ33bFjh91+Bw4cMP8dd+zY0UiSJIldf1J4eLixdetW486dO4ZhRP9+FdN3qaj3KK5fv264uroaHTt2tPvcvXv3GpKMSZMm2b3Ps31pcG6VKlViDCEs5SYgjkUu+fXs0l/4Z2FhYfLy8rLbFhwcrFSpUqlr164aPHiwuT1hwoQ6deqUunfvrsOHD+vu3bsyDEMhISHKkiWLJClFihQqXry4NmzYoBYtWmjXrl16/PixPvjgAw0ePFjbtm1TxYoVtW7dOuXPn18ZMmSIMdehQ4ckSW+++abd9nLlytktyZw4cWLt3btXnTp10okTJ3T//n0ZhqHg4OBoyyE/Kzw8XN9++63Wrl2rGzdu6OnTp+ayoP/0s4gucum/a9euKX369BanebWuXLmiZcuW6aOPPlKBAgXsluzGq/fee++pSZMm2rRpkzZt2qQtW7Zo4cKF+vnnn5UvXz67WSSfFXWWwpQpU0qSihQpYrdPypQpo80EVqpUKXOJRUnKkiWLUqRIobNnz8b4Odu2bVO+fPmULl06u+3VqlXTsmXLdP369b+tvC5SpIi5dGNkJl9fX7vlJiPz3717V0mTJjW3lytXLtrvvGnTJj169OgfZwr6Oy/zO+XJkyfauQevxl9//eV0bXRISIju3LmjadOmKWHChPL397c6klOjjbbPTxuNZ82YMcPu+44zuH//voKCgjRkyBClTp1a2bNntzoSnhHZpoWHh7/U/pJUvHhxu9cOHTqkKlWq2O3j6+ur3Llz6+HDh3/7vsWLF7drz1OlSiUp4vpGerE+i7+zevVq+fn5xfiap6en3fPSpUvbPY+axcvLSzt27FDp0qXtfs9cuXLpp59+kiQdPnxY9+7di9buu7u7q3jx4tqxY4ekv+8biZwVTIpo55MlSxbteFerVk3ff/+9jhw5olKlSkmK6LfJmjXr8w8EXqknT55Iks6cOeN01+kPHz5UYGCgJk6cKA8PD5UpU8bqSPHaf2nLY2rzItveoKAgHTlyRF27drX7GQ8PD5UrV0579uyx+9kSJUroxx9/jPEzmzVrZr6vFLGaUUBAgNzd3e32K1OmjBYuXKhTp04pd+7cz/0d/u6zYrrejWwnpYjf39fX18yzd+9ePX36VCVKlLD7magzyu/cuVNS9Gv6yL/bu3fvVoMGDXTo0CHlyZNHHh4e5j4JEiRQyZIltWLFCkkvf1yfbf8R+0aPHq3p06dbHeOVCgwM1MOHDzVgwAClS5fO6c5Tjiim+3mRGjRooICAgGjb+/fvr99//11VqlTRmTNntG3bNiVOnPgfPyt37tx2+8XUDxO1byOqZ/veChUqpClTpujUqVMqXLiw3N3dNXXqVK1YsUJXr17V48ePFRYWJun59+bc3Nx048YNffLJJ9qzZ4/++usvhYeH6/Hjx9FmZJdiPndF9gOdOXNGt27ditam169fX/Xr15cUcX0tRVxPRxX5XWbPnj2qUqWKuZ122HqVK1eOds0Qn4WHh+vatWv69ddfJUX0IUauTonY16ZNG/Xv319Xr15V2rRpNXnyZGXNmlX+/v7P7WOO6u+uM6Py9PRUkyZNNHPmTA0dOlSJEiXS5MmTFRAQoEyZMkXb38vLSxs3blT79u117tw5u/vTUdtTDw8PzZkzRyVKlNCff/6pnDlzmivaRXJ3d9c333yjTz/9VKtXr9aWLVu0ZcsWjRs3TmPHjlXDhg01d+5cubi4aMeOHcqdO7eSJEli/ryPj4/mzJlj97ssWrRILVq00MWLFxUSEmK2189r62l7rffOO+/87YqN8dGVK1e0YsUKffjhhypUqJDdvyNmSUekCRMmqGTJkipQoIC5rX379ho1apQWLFigZs2axdkYt6h91g8fPtThw4f15ZdfatWqVVqzZo2SJk36wv0RO3fuVN68eaOtglGmTBmNGDFC+/btU40aNdSgQQNNmjRJISEhqlmzpsqXL680adL87b+JyL6LmK7NX9SLfE8oW7as/Pz89M4776h9+/aqUKGCSpYsqYIFC5rvU6dOHU2ePFklS5ZU69atVb58eeXPnz/ad4SXsWvXLoWFhUU7RxUpUkS+vr7as2eP3SomnKMQVeQKHJ6ennbjAoBXhQIOwIG5urrqwIED5vP79++rUqVK8vf319ChQ+32XbZsmd5++21Vq1ZN06dPV/r06eXq6hrt5lqNGjXMmxlr1qxR6dKl5eXlJX9/f61fv14VK1bU2rVrVa9evefmun//vmw2W7RBEs+eyMaOHauPP/5YTZs21RdffKHUqVPLxcUlxo7qqIKDg1WuXDmFhIRo+PDhKlKkiDw8PLRo0SL16dPnb38WMQsKCpIU0WnorMVUxYoVU+3atbVy5coX6rBD3HF3d1flypVVuXJlSRFLVo4YMUKDBw9Wv3791LJlyxh/LupNqcgvmc/e0LLZbNG+eCZLlizae3l5eT13yfd79+7p3Llz0W64RX4BvXLlyt9+AY4pU0zbJPsvyTabLVo7Gpnh7t27/6kj6mV+p5iOF16NsLAwp22jXVxcVL16dVWqVElr1661Oo5To42mjcbzPXz48B8HscdX6dOnV61atZQgQQJt3brV6jiIwtfXV0mSJPnH7zgPHjzQrVu37IoDnm1T7t+/H+Ogs6RJk/7j3/1nf+7ZtvRF+yyeJ3PmzC88MPGfsty5c8duIMOz7t27J0ny9vaO9lrSpEl1//59STL/++znPXu+uHfvnu7duxdtv8iB2lGv/2jnHcvjx48lSaGhoU59nV6zZk2VLFmS6/Q49F/a8ue1edL/2rNx48Zp8uTJdvs9efIk2uAfDw+P5xZrRi1oiHzv57WT0v/ayOf5u896lqura7TPj/rd4s6dO5L0j227zWaLts+zee/fvx/jALyobfvLHlfa9rgXFBRk9n87m8yZM6t27doKCQkxBwbBGs/ez4sqSZIkWrlyZYw/8/HHH6tJkyYqV65ctAFlz/O8foyY+mae7YdJnjx5tGySzOv96tWr6+jRo/rmm2/k7++vxIkTa+fOnWrevPlz8+zfv18BAQEqVKiQxo4dq6xZs8rd3V19+vTR0qVLo+0f07nrZdt0SdGKsiN/32ev22iHrXfz5k2rI1imdOnSql27tmbPnk0RRxxp2bKl+vfvr6lTp6pbt26aM2eOevfuHa19iMk/XWc+q23btpo4caLmz58vf39/rV279rlFyX369NGIESPUuXNnfffdd/Lx8ZHNZlOOHDmi7VuwYEEFBARo9erVmjZtmt0EGVF5e3vr3Xff1bvvvitJunDhgj7++GPNnz9fNWvWVMuWLXXnzp1/7Ktu0aKFFi9erIEDB+qtt96St7e3rly58rdjOGh7rXfr1i2rI1imePHiZlsqRRSPRharwrmdOnVK69evl2EYMbb7kyZNUrNmzeJsjNuzfdYFCxZU2bJllSVLFo0YMUJffPHFC/dH3Lt3z26yueftN336dJUrV06zZs1Ss2bNFBoaqnLlymn48OEqVqxYjDkj+zlOnTr1ryfpepHvCWnTptXu3bs1atQozZ49WwMHDlTSpEnVrFkzffPNN/Ly8lK1atW0bds2jR49WoMGDdKtW7eUPn169ejRQ127dv1X2SLPUY0bN5arq6vdayEhIZyj8Lcir9HTpEnzQtePQGyjgANwcM9ePA0fPlzt2rXT3Llz1bhxY3P7jz/+KC8vLy1ZssRuBuDAwEC7n69Ro4YGDBig8+fP6/fff9dbb70lSapQoYIWLlyoK1eu6MSJE+b2mHh5eckwjGizDUd2rEaaMWOGcuTIodmzZ9vNJPfsfs9av369Ll68qNmzZ6tZs2bm9shBbHh5SZIk0Z07d+Ti4uJ0sxGEhYVp0KBBZkU1A86sExoaqpCQkGhfTr29vTVo0CAtW7ZMe/fufe7g4H8rphu4QUFBSpEiRYz7+/j4KHHixFq4cGGMrz87Q3psMQxDDx8+tLvRFpk96kwLz3Ycv8gNaqt+J7wcV1fX584sHV89ffpUCRIk0NChQ80OtM6dO1sdyynRRv892mhIEYNhnK1j12azqXPnzurZs6dsNpumTJlidSQ8w8XFRZUrV9aqVauitVNRLV++XOHh4apRo8ZzB414eXkpODg42vZ/+g7/Il60z+JVSJUq1XMLBaX/3cCJaZ/AwEDz9ciBZ88es2ePl4+Pj3x8fMyVO56VOnXqF42OVyxhwoQKDg6Wm5ub0/1/evr0qRImTKhhw4apSZMmunDhgnr27Gl1rHgrNtvyqJInTy6bzaZWrVqpd+/esZo5WbJkz20nI19/VSJXWvqntt0wjGiFJ8/mfZFzYVweV/w7SZIkccpZEiMHuNhsNg0fPtzqOFD0+3n/JDAwUL1791atWrW0atUqzZgxQ61atYqbcP/v2X6KyJmskyZNqiNHjmjPnj0aMmSIOnXqZO6ze/fuv33Pn376SaGhoVqyZIldH8a/WQ39Rdr0yH6YRYsWKVu2bNFed8b2wNGlSpXKqVbgMAxDhmFoyJAhatOmjSQ9t98P/12aNGn01ltvaebMmcqYMaMePnwY633YkYoVK6b8+fNr5syZOnv2rLy8vMzVgZ41Y8YMVa5cWaNHjza3Rc7w/KyFCxdq7dq1ql27tvr27auaNWua7aEUUWTn7u4erVA4U6ZMmjVrlpIlS2b23f9Tn0dQUJAWLVqktm3b6rPPPjO3/1NxAG2v9VKmTOl0K3A8O85j7NixkiQ/Pz+5uLhYGQ0OYuLEiUqSJInWr18fbeD+unXr1LNnTx0/fjzOx7hFlTlzZqVKlcos7n7R/ogX7WdxdXXV+++/r/fff1/BwcFas2aN+vXrp6pVq+r8+fMxTrYRuYLq/PnzVaNGjRhzBwUFaebMmWrTpk204saX+Z6QPn16jRgxQiNGjNDFixf1888/a+DAgQoJCTEnmy5WrJhmz54twzB04MABjR07Vt26dVPy5Mn/1Tk88hw1duxYlS9fPtrrz/4+QKSQkBDz31jatGmtDQOnRQEH4ly6dOl05coVBh7FkrZt2+qnn35Sp06dVKFCBfMG8pMnT+Tl5WV3sbllyxadPHnSbla2okWLKlWqVFq6dKl27dqlkSNHSooo4Ojbt69+/fVXJU+e/G+XJ8uTJ48kafv27apQoYK5fePGjXb7PXnyRClSpLCrUJwzZ47dMpxRRVZFP3nyRFLE7HORQkNDNXPmTHM/vJzIC9I0adLo8uXLFqeBMwoODlbGjBlVunRpc9noqB4/fqxbt27ZLZ8YW7Zs2WI3A+KZM2d0584dsy17VpkyZTR16lT5+vraDTi4evWqEiRIEKdf8NavX6/atWubz3ft2qVs2bIpYcKEkiK+mD/bibply5YY3ytqW2nl74QXlyJFCtpoWII2+sXQRqNVq1bmTSLAkUR+l+/Ro4cmTJgQ7fXbt2/r008/VcmSJVW1alXNmDEjxvfJkyePdu7caTdj2fXr13XixAllzpz5P2V80T6LV6FAgQLatm2bQkNDzVktz58/r+bNm6tfv36qUqWKkiVLpo0bN6pLly7mzz1+/Fg7duxQ2bJlJdn3jeTKlcvc79m+kTJlymjBggWS7Af13b59W48fP/7b2YVhrQQJEig4OFjZsmXT8ePHrY6DeC622vKoEidOrIIFC+rYsWPRBhWfOnXqhVc2ikmJEiW0bdu2aCtObNq0SSlSpLCbWTiu+3Lz5s0rFxcXbdq0yW5V6fHjx2v+/PlatWqVSpQoISmija5Tp45dXkkqWbKkpIi2fdmyZXrw4IFZqPfo0SO7Iry4PK74d7p06aLBgwdbHQN4aR988IESJkyoX375RcOGDVPnzp3l7+8f48DY2LJ+/XrlzZvXfL53714lTJhQOXLk0LFjxyTZ35uTpGnTpkl6fnse0z29s2fPauPGjS99DsiYMaOSJUumTZs2qVu3bub2xYsXa8SIEZo/f77KlCkjSbp8+bKqVatm7hMWFqYTJ04wI7cDWrt2rfLnz291DMRjbdu2Vd26dfXtt9+qYsWKMc5gHpuf1atXL126dEnvvvtutNncIz158uSF2tMrV66offv26t27tz7//HMVKlRIrVu31ooVKyRF9DmULVtW33zzjXr06BHtcyLvKWXIkEFSRJ/HpEmTdPv2bfPzg4ODVaNGDbVs2VJ169aVYRgv3dbT9lpv0aJFZp+UMwoNDTVXdGKQLaSIvtoZM2aofv36Ma5klyNHDg0YMEATJ06MszFuMblx44bu3Llj9g28aH9EiRIlNHnyZN26dcuuTd20aZPc3Nz05ptv6q+//tLKlStVt25deXl5ydPTU3Xq1FFoaKgaNGig48ePm58XNW/q1KnVpk0bTZ48WU2bNlXlypXtMoeHh+vDDz/UvHnzVK5cuWjXbTFd70vRzx0HDhzQlStXVLNmTUkR1/Z9+/bV1q1bzX6V1atXK0WKFCpatKhsNpsKFy6sKVOmaP78+dqxY8e/KuAoVqyY3N3ddf78ebVt29butSNHjrzy+w94fUQtrnW2ybDhOChJBV4zNptNkydPVnBwsDp06GBuL1OmjK5fv64ffvhB58+f188//6yPPvpItWvX1tWrV3XkyBE9fvxYNptN1apV06hRo5Q4cWIVLVpUklSoUCF5eXlpxIgRqlatWrTq5Kjq16+vpEmTqlu3btq+fbuOHz+uzz77TEePHrXbr0yZMtqzZ48WLlyo8+fPa9y4cRo/frxKliypkydP6vTp0woLCzOrYRcvXqzjx4+rWLFiSpAggb777judPHlSu3btUtWqVc0L6S1btvztzBEAHI+np6cGDBig5cuXq169elq7dq0uXryo06dP69dff1WVKlV09+5dff7557H+2S4uLmrbtq0OHz6sffv2qX379nJ3d3/usu9du3aVi4uL6tevr61bt+rChQtatmyZypYtqxYtWsR6vkiurq76+uuv9fvvv+vUqVMaOnSotm7das7QJEV8gV+7dq2WL1+us2fPasqUKVq9erXd+0TOBLl9+3YdOnRId+/etex3AvB6oI3+Z7TRABxZ8eLF9cMPP2jKlCl66623tGrVKl24cEEnTpzQ1KlTVaxYMSVMmFDz5s372/dp3bq1zp8/r549e+rEiRPavn27GjZsGCsrhL1on8Xz3Lp1S9evX4/xzz/NEvmsTz75RIGBgXrvvfd08uRJHThwQO3atdO5c+dUvHhxubu7q2/fvlqyZIkGDRqkkydPat++fWrUqJHu3bunvn37SoqYCCNz5swaOHCg1q5dq1OnTmn06NH6/fff7T6vVatWypgxoxo2bKi1a9fqwoULWr9+vapVq6bq1auz2igASbHXlj9rwIAB2rp1q7p06aKDBw/qzJkzGj9+vAoWLKgxY8b867z9+vXTX3/9pSZNmujgwYM6fvy4Pv/8cy1btkz9+vUzZ0P18fHR9evXtXnzZp05c8b8+SdPnjy3Xb9+/fpLzdru5+en9u3ba/z48ZoxY4YuXLigJUuWqF+/fsqRI4cSJEigunXrKn/+/OrUqZOWL1+uc+fOacmSJercubOKFCliDi5o3bq1Hj58qA4dOujo0aNm+x9ZzBHXxxWA85g1a5bmz5+v6dOny9PTU/3791fWrFnVrFkzhYaGxtnnTps2TQsXLtSZM2c0ZcoUzZ49W02bNpWHh4dy5cqlFClSaPLkyTpy5IgOHTqkRo0aKWfOnJKkHTt2xHjtHTmod/DgwTp//rxWrFihOnXqqFGjRgoPD9fGjRv18OHDF8oXeS3+66+/6ptvvtGFCxe0du1adevWTYkTJ1aaNGlUsGBB1a1bV3379tXs2bN19uxZ7du3Ty1atFDx4sV17ty52DtgAF4LNWvWVOrUqXXkyJE4X8moefPmstlsOnHixN9+VpkyZbRy5UqtX79eZ86c0aBBg7Rnzx5lyJBBhw4d0oULF2QYhlq1aqW0adNq4MCBSpQokWbMmKFVq1bp+++/lySVKlVK77zzjvr06aNevXpp9+7dunLliv78809NmzZNb731lrJly2auUNCtWzclSpRIjRs31uHDh3Xs2DG9//772rdvn8qWLSsfHx/lypVLc+fO1a5du3T8+HF9/PHHcnFxkaurq/bs2RPjSiG0vbDajRs3zEHiDLKFJM2fP19//fXXc+8nJk6cWPXq1dPMmTNVs2bNWB3jFilqn/XFixe1Zs0avf322/L09DQnBnrR/ohu3bopQYIEql+/vnbt2qXTp09r9OjRmjhxojp27GgWT3z44Ydq0aKFdu3apcuXL2vPnj2aMGGC0qRJYxaq+Pj46OTJk9q9e7cuXbokSRoxYoTKlSunWrVqqV+/ftq/f7/Onz+v33//XdWqVdP8+fM1c+bMGItuX/R7wq5du1SvXj1zrN/Fixe1cOFCbdmyxSwa+fHHH1WnTh0tWrRI58+f1+nTp/XNN98oKChIlSpV+ld/F1KmTKmPPvpII0eO1Lhx43Ty5EkdOXJEXbt2VaFChbR9+/Z/9b6I/6KucExxIKxCAQfwGsqePbsGDhyopUuXatasWZIiZplq166dPv/8cxUoUECzZs3SwoUL1bdvX3l7e6t06dI6efKkJKlGjRq6cOGCypcvbxZquLi4qHz58jpz5ozeeuutv/18X19frVixQgkSJFBAQID8/f11584dDRs2zG6/IUOGqG7dumrbtq0KFy6szZs3a9GiRerVq5eCgoJUokQJBQYG6v3331euXLnUuHFj9enTRxkyZNDMmTN15swZFSxYUK1atVKbNm00evRolS9fXgMHDjRXDgHw+vj444+1Zs0aubu7q127dsqVK5fy5cun7t27K2fOnNq7d685I0BsqlGjhgoUKKDatWurVKlSun79uhYuXPjcWYQzZcqkrVu3KkmSJKpdu7ayZcumjz76SPXr1zdnzo0ro0eP1sCBA1WgQAGNGDFCXbp0Ue/evc3Xx40bp7Jly6pp06YqUqSI1q1bp4kTJ9q9R+LEidWnTx9t27ZN/v7+Onr0qKW/E4DXA230P6ONBuDI2rdvr3379ilVqlT64IMPlDNnThUrVkwTJ07Uhx9+aA4S+Kf3GDx4sObOnav8+fOrbdu2+vjjj1W8ePH/nO9l+ixiUqRIEaVJkybGPy87k2vZsmXNgdGFCxdWlSpVlDhxYm3cuNG8EdanTx+NHTtW8+bNU/78+RUQEKAHDx5o/fr15vkwQYIEWrFihbJly6batWurWLFi2rlzpyZNmmT3ed7e3vrjjz+UL18+NW3aVNmyZVPTpk1VtGhRrVu37m8n0ADgXGKjLX9W3bp1tXTpUu3evVulSpVSnjx5NH78eI0YMUJ9+vT511nLlCmj1atX69atWypTpowKFSqkX3/9VVOmTFH37t3N/bp06aLUqVOrSpUq+u6778ztf/zxx3Pb9TRp0mjIkCEvlef7779Xv379NGjQIOXMmVM9evRQ586dzYFv7u7uWrdunapUqaL3339fOXPmNAsJ16xZY67IVLVqVU2aNEk7duxQ4cKF1aBBA1WuXFn169e3+7y4Oq4AnMP58+fVqVMndenSxZxJ293dXT/++KP27dungQMHxtlnT5s2TRMnTlSBAgXUs2dPNW3a1GwrPT09NW/ePD19+lTFihVT3bp1VaJECY0bN06NGzfWlClTYpz9/d1331Xfvn01depU5c2bV8OGDdO0adP02WefKUuWLHrrrbe0efPmF87Yp08fjRkzRtOnT1fOnDnVpk0bvf3225o/f765z5w5c8zvF2+88YYqVqyooKAgbdq0iRl2ASfk5uamli1bKmnSpHrnnXfi9LNSpEihunXrKnv27H+7GsL48eNVvHhx1alTR6VKldLVq1c1e/Zs9erVS8eOHVP58uU1atQobdy4UT/++KO5ql3JkiXVo0cP9e7dW0eOHJEk/fLLL5o4caL27t2runXrKkuWLCpevLjGjBmjFi1aaPfu3ebKztmzZ9fmzZvl6uqq0qVLq3Tp0rpx44Y2bNhgDrSdM2eO/Pz8FBAQoEqVKilJkiQaN26cunfvrt9//12NGzeO8Xei7YWVGGSLZ02YMEHp06dXQEDAc/dp0aKF7ty5o40bN8bqGLdIUfuss2fPrvbt26tQoULau3ev2ea+aH9EZPudOHFiValSxexnGDx4sNmfkiJFCm3atElPnz7VW2+9paxZs6pOnTry8fHR+vXrzZWe+/btq7CwMPn7+2vu3LmSIu5PrlmzRt9//722bNmiihUrKnfu3Proo4+UKVMmcwKLmLzo94T27dtr1KhRmj59uooUKaLcuXOrf//+6tKliznGb8qUKWrcuLF69OihXLlyqVixYlq8eLFmz56tBg0avPTfg0gjRozQwIED9f333ytfvnwqWbKkDh06pNWrV5sF58CzOLfAEdiMuF6/Gk4vffr0unLlitKlS2cu4ejI7wtYJS7/TvPv5X+qV69uzoYdGBgob29vixMhLtlsNrVt21ZTpkyxOsrfatWqlWbPnh2ns6vBcWXNmlXnzp1TqlSpdOPGDavjWOr+/ftmu1y1atVoqxcgfqGNxutgz549KlasmCTpo48+0tixYy1OZK0pU6aYM/pNnjxZ77//vsWJACDuJE+eXIGBgXrjjTd0/Phxq+NY6sKFC2aBbaNGjcybvwBglTVr1qhq1aqSpP79+2vw4MEWJ7LW8OHDzQkGFi5cGOeDVwHgn7Rv316TJ0+WJB06dOilC+/jm2LFimnPnj1ycXFhFUYAL6xXr1769ttvJUUUwf9d0VB89+uvv6pOnTqSIlb96t+/v8WJAACvu9GjR6tr166SIlbJfN6KPkBcYgUOAAAAAAAAAAAAAAAAAADgUKLOkp4mTRoLkwAA4gtW4IAjoIADAAAAAAAAAAAAAAAAAAA4lGvXrpmPGWQLAIgNUc8tFAfCKm5WBwAAAIgrhmFYHeGFzJgxQzNmzLA6BgC8UrTRAAAAAAAAAAAA+DuswAEAiG2swAFHwAocAAAAAAAAAAAAAAAAAADAoTDIFgAQ2yLPLZ6enkqaNKnFaeCsKOAAAAAAAAAAAAAAAAAAAAAO5dq1a5IkNzc3+fr6WpwGABAfRJ5b0qRJI5vNZnEaOCsKOAAAAAAAAAAAAAAAAAAAgEOJnCXdz89PLi4MdQQA/DchISEKDAyUxMpOsBZXNQAAAAAAAAAAAAAAAAAAwGGEhobq5s2bkhhkCwCIHZGrb0gRK3AAVqGAAwAAAAAAAAAAAAAAAAAAOIwbN27IMAxJDLIFAMSOyJWdJIoDYS0KOAAAAAAAAAAAAAAAAAAAgMNgkC0AILZxboGjoIADAAAAAAAAAAAAAAAAAAA4jGvXrpmPGWQLAIgNUc8trO4EK1HAAQAAAAAAAAAAAAAAAAAAHEbUWdIZZAsAiA2swAFHQQEHAAAAAAAAAAAAAAAAAABwGKzAAQCIbazAAUdBAQcAAAAAAAAAAAAAAAAAAHAYrMABAIhtrMABR0EBBwAAAAAAAAAAAAAAAAAAcBgMsgUAxLbIc4uHh4eSJk1qcRo4Mwo4AAAAAAAAAAAAAAAAAACAw7h27Zokyc3NTb6+vhanAQDEB5HnlrRp08pms1mcBs6MAg4AAAAAAAAAAAAAAAAAAOAwImdJ9/Pzk4sLwxwBAP9NSEiIAgMDJbGyE6zHlQ0AAAAAAAAAAAAAAAAAAHAIoaGhunnzpiQG2QIAYkfk6huSlCZNGguTABRwAAAAAAAAAAAAAAAAAAAAB3Hjxg0ZhiGJQbYAgNgRubKTRHEgrEcBBwAAAAAAAAAAAAAAAAAAcAgMsgUAxLao5xaKA2E1CjgAAAAAAAAAAAAAAAAAAIBDuHbtmvmYQbYAgNgQ9dxCcSCsRgEHAAAAAAAAAAAAAAAAAABwCKzAAQCIbZxb4Ego4AAAAAAAAAAAAAAAAAAAAA6BQbYAgNjG6k5wJBRwAAAAAAAAAAAAAAAAAAAAh8AgWwBAbKM4EI6EAg4AAAAAAAAAAAAAAAAAAOAQGGQLAIhtkecWDw8PJU2a1OI0cHYUcAAAAAAAAAAAAAAAAAAAAIcQuQKHm5ubfH19LU4DAIgPIs8tadOmlc1mszgNnB0FHAAAAAAAAAAAAAAAAAAAwCFEzpLu5+cnFxeGOAIA/pvg4GAFBgZKYmUnOAaubgAAAAAAAAAAAAAAAAAAgOVCQ0N18+ZNSQyyBQDEjsjVNyQpTZo0FiYBIlDAAQAAAAAAAAAAAAAAgP/MMAyrIwDAa8/Z29IbN26Yx4BBtgCA2BC1gIPiQDgCCjgAAE7F1dXVfPz06VMLkwBAhNDQUEn27ZOzoo0G4Ggi22iJdlqyPwZRjw0AxEdcp/8P1+kAHE3Ua1E3NzcLkzgG2mkAjob+FHuRxyA8PFzh4eEWpwHwunD2tvTq1avmYwbZAgBiQ9RzC8WBcAQUcAAAnEqSJEnMx/fu3bMwCQBECAwMlGTfPjkrT09PsxOaNhqAI4jaFiVNmtTCJI4h6jGgnQYQn4WGhurBgweSuE6XaP8BOJ7IvhSJdlqinQbgeOhPsRf1GNy/f9/CJABeJ87elkadJZ1BtgCA2MAKHHA0FHAAAJxK1C/3V65csTAJAEhBQUEKCgqSJPn5+Vmcxno2m02pU6eWJF2+fNniNABg3xbRTtsfA9ppAPFZ1Jm4aP8jBkd7eHhIov0H4Bii9uvSTnOdDsDxRLZFNptNqVKlsjiN9WinAfwbzn7NywocAIDYxrkFjoYCDgCAU8mWLZv5+Pjx4xYmAQD7dih79uwWJnEcke30zZs3dffuXYvTAHB2tNP2uJYG4Cxo/+3ZbDbzHHD27Fk9ffrU4kQAnB3ttD2u0wE4EsMwdOLECUlShgwZlCBBAosTWY92GsC/EdleeHt7y8fHx+I0r17UQbaswAEAiA2cW+BoKOAAADiVAgUKmI/37NljYRIAsG+HorZPzox2GoAjoZ22lzp1aqVMmVKStHfvXoWHh1ucCADiBu1/dJHH4enTpzp06JDFaQA4u8h22sXFRXny5LE4jfVy5MihRIkSSaIvBYD1Tp06pfv370uSChYsaHEax0CfN4CXdePGDV26dElSRBtis9ksTvTqXbt2zXzMLOkAgNjAuQWOhgIOAIBTefPNN+Xu7i5JWr9+vcVpADi7qO1QqVKlLEziOKIehw0bNliYBICzCw4O1vbt2yVJmTJlYiYWRczAXrp0aUnS3bt3GcALIN7iOj26qMeB/hQAVrp9+7Z5HVqgQAF5eXlZnMh6bm5uKlasmCTp3LlzunDhgsWJADizqH26JUuWtDCJ46DPG8DLitpWOGu/RNRZ0hlkCwCIDZHnFg8PDyVNmtTiNAAFHAAAJ5M4cWKVKVNGknTmzBkdPXrU4kQAnNWjR4+0evVqSVLy5Mn15ptvWpzIMVSuXNl8vHTpUhmGYWEaAM5szZo1evz4sSSpSpUqFqdxHFGPxdKlSy1MAgBx4+7du9q8ebOkiAK+7NmzW5zIMVStWtV8TPsPwErLli0z+wq4Tv8f2mkAjiJqGxS1bXJmfn5+yp8/vyRp9+7ddoOSASAmtKX/myXdzc1Nvr6+FqcBAMQHkeeWtGnTOuXqVnA8FHAAAJxOvXr1zMezZs2yMAkAZ7Z06VIFBQVJkt5++225urpanMgxpE6d2iy0+/PPP7V//36LEwFwVjNnzjQfR71+dHZ16tQxOzVnzZql8PBwixMBQOz65Zdf9PTpU0kR7T83ciLkzJlTefLkkSRt3bpVZ86csTgRAGcVtT+X6/T/oc8bgCO4fv26fv/9d0lShgwZVKRIEYsTOY7IdtowDM2ePdviNAAc2b1798wCDh8fH5UrV87iRNaILHbz8/OTiwvDGwEA/01wcLACAwMlsbITHAdXOAAAp9O4cWO5ublJkqZOnarg4GCLEwFwRmPHjjUfv/feexYmcTxRj8f3339vYRIAzurixYvmTbLUqVMzs28U6dOnV8WKFSVFrGgXuZoUAMQHhmFo3Lhx5vOWLVtamMbxRL1Oj3qcAOBVOXr0qDZs2CBJypEjh0qWLGlxIseRN29ec6D0nj17tGPHDosTAXBGEyZMUFhYmCSpRYsWDLiNokWLFubjCRMmKDQ01MI0ABzZtGnTFBISIklq0qSJ3N3dLU706oWGhurmzZuSpDRp0licBgAQH0SuviFxboHj4BszAMDppEqVSu+++64k6fbt25o4caLFiQA4m02bNmnLli2SpDx58qhChQoWJ3IsTZs2VbJkySRJs2fP1rlz56wNBMDpDBs2zBxw0KFDB6e8SfZ3PvroI/PxkCFDZBiGhWkAIPYsWbJER44ckSSVLl1ahQoVsjaQg2nTpo0SJUokSZo0aZI5mAIAXpUvv/zSfPzRRx+xStIznr1OB4BX6d69exozZowkydXVVR06dLA4kWPJnj27qlWrJkk6d+6cfv75Z4sTAXBEISEh+vbbb83nH374oYVprHPjxg2zz5lZ0gEAsSFqAQfnFjgKCjgAAE6pT58+5uMhQ4bozp07FqYB4EzCwsLUs2dP83mfPn0YcPAMLy8vffzxx5IiZtnp27evxYkAOJPjx49r0qRJkqTEiROb7RH+5+2331bu3LklSdu2bdOiRYssTgQA/92TJ0/0ySefmM+5Bo0uZcqUev/99yVJDx8+1IABAyxOBMCZ7N69W3PmzJEk+fr6qm3bthYncjzNmjVT+vTpJUkrVqzQ+vXrLU4EwJl8+eWXunv3rqSI9ihjxowWJ3I8Ub9v9O/fX8HBwRamAeCIRo0apatXr0qS6tSpozx58licyBqRx0BikC0AIHZEPbewAgccBQUcAACnVKBAATVr1kySdOfOHfXo0cPiRACcxQ8//KA9e/ZIkvLly2e2RbDXo0cP+fr6SpLmzZunlStXWpwIgDMIDw9Xhw4dFBoaKknq2bOn2Rbhf1xdXfXVV1+Zz7t06aLAwEDrAgFALBg6dKhOnDghSSpTpoxq1aplcSLH9Omnn8rLy0uSNHHiRG3bts3iRACcwZMnT9S+fXvzef/+/c22CP+TMGFCDRo0yHzesWNHhYSEWJgIgLM4cOCARo0aJSmiLRo4cKC1gRxU+fLlVb16dUnSpUuX9Pnnn1ucCIAjOXXqlLmKmouLi1OvqBZ1lnQG2QIAYgMrcMARUcABAHBaw4YNU9KkSSVJM2bM0IIFCyxOBCC+O3z4sHr37m0+HzdunFxdXS1M5Li8vb01bNgw83mbNm1048YNCxMBcAbffPONNm/eLEnKkiWLXZsNe3Xq1DEHHVy5ckUffPCBuaw9ALxutm/frsGDB0uKKFIbO3Ysq+Q9h5+fnzkgzzAMNW/enCI+AHGuf//+OnDggCQpf/78+vDDD60N5MBatmypkiVLSpJOnjyp7t27W5wIQHz38OFDNWvWzJwMo2/fvsqSJYvFqRzX6NGjlTBhQknSyJEjtXbtWosTAXAEjx8/VrNmzczi248//lj58uWzOJV1WIEDABDbOLfAEVHAAQBwWunSpTNnBJKk1q1b6+DBgxYmAhCf3b59W/Xq1dOjR48kSZ06dVK5cuUsTuXYWrdubQ4Ovn79uurXr28ePwCIbStXrtSnn34qSbLZbJo2bZo8PT0tTuW4bDabJk6cKG9vb0nSL7/8om+//dbiVADw8i5fvqwGDRqYA8769eunQoUKWRvKwXXt2lWlSpWSJJ07d05NmjQxjx8AxLa5c+dq+PDhkiR3d3dNnz5d7u7uFqdyXC4uLpo2bZoSJUokSZowYYImT55scSoA8VV4eLhatWqlP//8U5JUoEABffLJJxancmw5c+Y0i8cNw1Djxo115swZi1MBsJJhGPrwww+1e/duSVL27NmdevUNyX6QLStwAABiA+cWOCIKOAAATq1169Zq1qyZJOnBgweqUaOGTp06ZXEqAPHNvXv39NZbb5k3YgoXLmwOPsDz2Ww2/fjjj+YMCFu3blWTJk309OlTi5MBiG+2bt2qhg0bKjw8XJL0+eefKyAgwNpQr4GMGTNq2rRp5vPevXtrxowZ1gUCgJd069YtVatWzbx5U65cOX3++ecWp3J8rq6umjNnjnx8fCRJq1atUtu2bRUWFmZxMgDxzerVq9WyZUvz+fDhw/Xmm29amOj1kDt3bo0bN8583rFjRy1atMjCRADiI8Mw9PHHH5ur2ydJkkTz5s0zV5fA8/Xo0UM1atSQJP3111+qWrWqrly5YnEqAFYwDEP9+/c3+1gTJUqkX375RV5eXhYns9a1a9fMx8ySDgCIDZxb4Igo4AAAODWbzaZJkyapRIkSkiIu2MqXL69Dhw5ZnAxAfHHjxg1VqlTJnDknTZo0WrJkiTkTIv5eqlSptHTpUnMW/CVLlqhevXp6+PChxckAxBdr1qxRtWrVzHalQYMGDN59Ce+8844GDRpkPm/Tpo3dYDEAcFQXL15U+fLlzdmCs2bNqgULFsjNzc3iZK+HTJkyaeHChUqQIIEkaebMmWrRooUeP35scTIA8cXixYtVp04dPXnyRJLUtm1bde7c2eJUr482bdqoW7dukqSwsDA1atRIs2fPtjgVgPgiNDRU7du31w8//CAposB37ty5euONNyxO9npwcXHRzz//rDx58kiSzp49q3Llyun06dMWJwPwKoWHh6tHjx766quvzG0zZsxQkSJFLEzlGKLOks4gWwBAbIg8t3h4eChp0qQWpwEiUMABAHB6np6eWrFihfLnzy8pooijTJkyWrhwocXJALzu9uzZo+LFi2vv3r2SJF9fX/3+++/KmDGjxcleL0WLFtXSpUvNopcVK1bI399fZ8+etTgZgNeZYRgaM2aMatSoYRZvVK1aVbNmzZKLC90lL6N///7q0qWLpIjj2qlTJ3Xq1IlBvAAc1ubNm1W8eHEdO3ZMkpQuXTqtWbNGKVOmtDjZ6yUgIEBz5841i17mzJmjSpUqMXswgP8kPDxcQ4YMUf369c3ryfr162vChAmy2WwWp3u9fPvtt+YKJqGhoWrRooX69eun0NBQi5MBeJ3dvHlT1atX15QpUyRFTJQ2Y8YMvfXWWxYne70kS5ZMv//+u7JmzSopooijRIkS+v333y1OBuBVuHv3rurVq6dRo0aZ28aNG6dGjRpZmMpxRM6S7ubmJl9fX4vTAADig8hzS9q0aelfgsNgRAIAAJJSpEih9evXq3jx4pKkBw8eqEGDBmrbtq3u3r1rcToAr5snT55oyJAhKl26tC5evChJSp8+vTZu3Kh8+fJZnO71VLlyZf3222/mbAj79+9XoUKFNHnyZIWHh1ucDsDr5tKlS6pVq5a6dOmisLAwSVKdOnXsisXw4mw2m0aNGqW+ffua28aNG6cSJUpo3759FiYDAHvBwcH65JNPVKFCBd24cUOSlD17dm3evNkcOIWXU69ePS1atEgeHh6SpK1bt6pAgQL6+eefZRiGxekAvG5Onz6tSpUq6bPPPjPbkBYtWmjOnDmskPQvuLi4aOrUqerYsaO57euvv5a/v7+5AhUAvCjDMLR48WIVKFBA69atkyS5u7trzpw5at68ucXpXk/p0qXT5s2blTdvXknSnTt3VK1aNXXp0kUPHjywOB2AuLJq1SoVLFhQv/76q6SIa7bJkyfrww8/tDiZ44icJd3Pz4/JlgAA/1lwcLACAwMlsbITHAtXOQAA/D9fX19t2LBBTZo0MbdNmzZNOXPm1JgxYxQSEmJhOgCvg/DwcM2fP1/58uXTZ599pqdPn0qSSpYsqZ07d5o3YvDvVKhQQdu2bVOOHDkkSUFBQWrfvr1KlSqldevWMUAMwD8KDAzUgAEDlCtXLv3222/m9t69e2vhwoUUb/wHNptNX3/9taZMmaKECRNKkg4ePKhixYqpXbt2ZkEjAFghNDRUM2fOVJ48eTR06FCzALhSpUrasWMHxRv/Ue3atbV582ZlyJBBUsTAs2bNmikgIEDbtm2zOB2A18GtW7fUq1cv5c2bVxs3bpQUcX05ZMgQ/fjjj3J3d7c24GvM1dVV48aN06hRo+Tq6ipJ2rFjhwoWLKjOnTubM1ACwN/Zs2ePqlevrnfeeccshE6dOrXWr1/PbPH/Ubp06bR161bVqlXL3DZmzBi98cYbmjx5sp48eWJhOgCx6fDhw6pTp45q1KihS5cuSZJ8fHy0cuVKvf/++xancxyhoaG6efOmJClNmjQWpwEAxAdR+z44t8CRUMABAEAUnp6e+umnnzR58mQlSZJEknT79m116dJFmTJl0qeffqrjx49bnBKAo7l27ZpGjhypXLly6d1339WpU6ckRdwk/+STT7Rp0yYq+WNJ3rx5tWfPHrVq1crctmvXLlWuXFnFihXTlClTWDkJgB3DMLRnzx516tRJGTJk0KBBgxQcHCwpYgav5cuXa9iwYeZgJvw3bdu21c6dO5U/f35JEcWNU6ZMUbZs2dSkSROtWbNGoaGhFqcE4CwuXryor7/+WtmzZ1fLli114cIFSREzBX/55ZdavXq1UqRIYXHK+KFo0aLav3+/GjZsaG7bvHmzypQpo7Jly2rmzJm6f/++hQkBOJrw8HBt27ZN7dq1U6ZMmfTtt9+ag1QzZcqk9evX69NPP5XNZrM46evPZrOpa9eu2rJlizkpRmhoqL7//ntlzpxZrVq10qZNm8zVCQFAkh4+fKg5c+aoYsWKKlasmH7//XfztVq1aungwYMqW7ashQnjD29vby1dulSjRo0yJxe5evWq2rdvr6xZs2rQoEE6e/asxSkB/BshISFasGCBqlevrgIFCpirbkhSxYoVdeDAAVWtWtXChI7nxo0b5oRt3FsFAMSGqAUcnFvgSGwG09QijqVPn15XrlxRunTpdPnyZYd/X8Aqcfl3mn8v/87ly5fVu3dvzZkzJ9prOXPmNDutc+XKpfTp08vb21tubm7cVATiKcMwFB4erqCgIF29elWnTp3Svn37tHHjRu3Zsyfa/v7+/hozZowKFSr06sM6iXXr1qlr1646cuSI3XY3NzeVLl1a/v7+Kly4sLJlyyY/Pz8lTpyYAdpAPGYYhp4+fao7d+7o0qVL+vPPP7Vr1y6tW7fOnNEskpubmzp27KhBgwYpWbJk1gSO5548eaLvvvtOX375ZbQBuz4+PqpYsaJKlSqlfPnyKXPmzEqRIoUSJUrEtTSAl2YYhsLCwnT//n1dvXpVJ0+e1N69e7VhwwYdPHgw2v7VqlXTqFGjlDt3bgvSOodly5apR48eZmF7pAQJEsjf319ly5ZVwYIFlS1bNqVOnVqJEyeWiwtzTQHxlWEYevLkie7cuaOLFy/q6NGj2rlzp9auXavr16/b7ZswYUJ17dpV/fv3l5eXl0WJ47eQkBANGzZMw4cPNwvbI6VMmVKVKlVSyZIllS9fPmXMmFEpUqRQwoQJuU4H4rHw8HAFBwfr5s2bOnv2rA4ePKgtW7Zo8+bNevTokd2+mTJl0vDhw9WgQQPahThy5swZde/e3W6Qd6R8+fKpQoUKevPNN/XGG28oXbp08vb2lqurK/8/AIuFh4crJCREt27d0tmzZ3Xo0CFt3bpVGzdujHbNlTZtWn399ddq0aIF/3ZjsHv3bhUvXlxSxGRBY8aMsTgRAOB1t2jRIrVo0UKSNGzYMPXu3dviREAECjgQ5yIHjru4uMTqEkTXrl1TeHh4rL8vYJW4/Dsd+d4UcPw7Bw4c0NChQ7VgwQJmIQPwjypUqKA+ffqoatWqdLy+AmFhYZo3b56GDx+u/fv3Wx0HgIPz8PDQe++9p969eytr1qxWx3EKf/31l0aPHq3x48fr9u3bVscB4MRq1KihPn36qHz58lZHcQpPnz7V7NmzNWLECB09etTqOAAcXJIkSdSmTRv17NlT6dOntzqOU7hx44ZGjhypSZMmKTAw0Oo4ABxczpw51a1bN7Vu3VoJEya0Oo5T2LFjh4YOHapff/1VDOkB4ofMmTOra9euat++vTw8PKyO47B+/fVX1alTx+oYAIB4atasWWrevLnVMQBJFHDgFcidO7eOHz9udQwAknLlyqVjx45ZHeO1df36dc2ZM0eLFi3S9u3bKeYAYCpQoIDq1KmjZs2a6Y033rA6jlMyDEN79+7Vzz//rGXLlun06dNWRwLgIBImTKiAgAA1aNBADRs2lLe3t9WRnNLjx4+1fPlyzZs3T6tXr9a9e/esjgQgnrPZbCpSpIjq1q2rZs2aKUuWLFZHckqGYWj79u2aM2eOli1bpgsXLlgdCYCD8PT0VMWKFdWwYUO98847rLhhkeDgYC1dulTz5s3T2rVr9eDBA6sjAXAQ6dKlU61atdSkSRP5+/uzYppFLl26pJ9//lmLFy/Wrl27KOYAXjOpU6dWzZo11bhxY1WsWJFV4l/A4sWL9c4771gdAwAQT+3atUvFihWzOgYgiQIOvAILFizQZ599pqCgoFh935CQEAUFBSlJkiRUpyNeiOu/00mSJNHgwYPVoEGDWH9vZxQUFKTdu3fr0KFDOnPmjK5du6b79+9T1AHEcy4uLkqcOLFSp06tLFmyKF++fCpRooRSpkxpdTQ849KlS9q1a5f+/PNPnT9/Xrdu3VJwcDA3uIB4zt3dXd7e3kqbNq2yZ8+uQoUK6c0331SiRImsjoYowsLCdPjwYe3du1cnT57U5cuXdffuXT1+/NjqaABeUy4uLkqSJIlSp06trFmzmtfpPj4+VkdDFIZh6Pz589q9e7f+/PNPXbhwQbdv31ZISAjX6UA85+7urmTJkildunTKkSOHChcurMKFCytBggRWR0MUT58+1cGDB7V//37zOj0wMFBPnjyxOhqAOGSz2ZQoUSL5+voqU6ZMyp07t4oWLaps2bKxwrSDCQwM1K5du3T48GGdPXtW165d04MHD7g3CTiIRIkSKUWKFMqUKZNy5cqlN998U2+88QZt6Ut68uSJevfurcOHD1sdBQAQz1SuXFmffPKJ1TEAEwUcAAAAAAAAAAAAAAAAAAAAAAAAcYx1LgEAAAAAAAAAAAAAAAAAAAAAAOIYBRwAAAAAAAAAAAAAAAAAAAAAAABxjAIOAAAAAAAAAAAAAAAAAAAAAACAOEYBBwAAAAAAAAAAAAAAAAAAAAAAQByjgAMAAAAAAAAAAAAAAAAAAAAAACCOUcABAAAAAAAAAAAAAAAAAAAAAAAQxyjgAAAAAAAAAAAAAAAAAAAAAAAAiGMUcAAAAAAAAAAAAAAAAAAAAAAAAMQxCjgAAAAAAAAAAAAAAAAAAAAAAADiGAUcAAAAAAAAAAAAAAAAAAAAAAAAcYwCDgAAAAAAAAAAAAAAAAAAAAAAgDhGAQcAAAAAAAAAAAAAAAAAAAAAAEAco4ADAAAAAAAAAAAAAAAAAAAAAAAgjv0f5EBvaN6ek+wAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
}
},
"906f7de280fd43759a3524b264e2e45a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ff0e0f64c4c44354a91e1ad16d671423": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4576faea095e4d54acd720a7c04a110c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ToggleButtonsStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ToggleButtonsStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"button_width": "",
"description_width": "",
"font_weight": ""
}
},
"3a17b9904f074605be7781706c573d88": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"33ec3e8ecdef41d6b2d3791b7551af7e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_979081ad5b7647ee8a5b11c1ca84b0a0",
"IPY_MODEL_3e3336064a7a4c83b2b3c307f48b1844",
"IPY_MODEL_9f90dd10961942a4a2d4228e91323d7c"
],
"layout": "IPY_MODEL_44d62c6d239a420ca8deb3353895a770"
}
},
"979081ad5b7647ee8a5b11c1ca84b0a0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_42a6df484d3c4dbbb7888e7cbfb38dda",
"placeholder": "",
"style": "IPY_MODEL_0ae2736197604017af8e540ce65c2cb4",
"value": "Processing: 100%"
}
},
"3e3336064a7a4c83b2b3c307f48b1844": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_358727466e8d4f338dc83875fed0a498",
"max": 7,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_e0261a02c8a34d419045b393f87f667b",
"value": 7
}
},
"9f90dd10961942a4a2d4228e91323d7c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7cd55352bab8461e9b71801606a51df2",
"placeholder": "",
"style": "IPY_MODEL_cee1e70784434c0699953f9f7d0940c3",
"value": " 7/7 [02:28<00:00, 16.89s/it]"
}
},
"44d62c6d239a420ca8deb3353895a770": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": "hidden",
"width": null
}
},
"42a6df484d3c4dbbb7888e7cbfb38dda": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0ae2736197604017af8e540ce65c2cb4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"358727466e8d4f338dc83875fed0a498": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e0261a02c8a34d419045b393f87f667b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"7cd55352bab8461e9b71801606a51df2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cee1e70784434c0699953f9f7d0940c3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}