import torch.nn as nn from function import adaptive_instance_normalization as adain from function import calc_mean_std decoder = nn.Sequential( nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 256, (3, 3)), nn.ReLU(), nn.Upsample(scale_factor=2, mode='nearest'), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, (3, 3)), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, (3, 3)), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, (3, 3)), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 128, (3, 3)), nn.ReLU(), nn.Upsample(scale_factor=2, mode='nearest'), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 128, (3, 3)), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 64, (3, 3)), nn.ReLU(), nn.Upsample(scale_factor=2, mode='nearest'), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 64, (3, 3)), nn.ReLU(), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 3, (3, 3)), ) vgg = nn.Sequential( nn.Conv2d(3, 3, (1, 1)), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(3, 64, (3, 3)), nn.ReLU(), # relu1-1 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 64, (3, 3)), nn.ReLU(), # relu1-2 nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(64, 128, (3, 3)), nn.ReLU(), # relu2-1 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 128, (3, 3)), nn.ReLU(), # relu2-2 nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(128, 256, (3, 3)), nn.ReLU(), # relu3-1 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, (3, 3)), nn.ReLU(), # relu3-2 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, (3, 3)), nn.ReLU(), # relu3-3 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 256, (3, 3)), nn.ReLU(), # relu3-4 nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(256, 512, (3, 3)), nn.ReLU(), # relu4-1, this is the last layer used nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, (3, 3)), nn.ReLU(), # relu4-2 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, (3, 3)), nn.ReLU(), # relu4-3 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, (3, 3)), nn.ReLU(), # relu4-4 nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, (3, 3)), nn.ReLU(), # relu5-1 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, (3, 3)), nn.ReLU(), # relu5-2 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, (3, 3)), nn.ReLU(), # relu5-3 nn.ReflectionPad2d((1, 1, 1, 1)), nn.Conv2d(512, 512, (3, 3)), nn.ReLU() # relu5-4 ) class Net(nn.Module): def __init__(self, encoder, decoder): super(Net, self).__init__() enc_layers = list(encoder.children()) self.enc_1 = nn.Sequential(*enc_layers[:4]) # input -> relu1_1 self.enc_2 = nn.Sequential(*enc_layers[4:11]) # relu1_1 -> relu2_1 self.enc_3 = nn.Sequential(*enc_layers[11:18]) # relu2_1 -> relu3_1 self.enc_4 = nn.Sequential(*enc_layers[18:31]) # relu3_1 -> relu4_1 self.decoder = decoder self.mse_loss = nn.MSELoss() # fix the encoder for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4']: for param in getattr(self, name).parameters(): param.requires_grad = False # extract relu1_1, relu2_1, relu3_1, relu4_1 from input image def encode_with_intermediate(self, input): results = [input] for i in range(4): func = getattr(self, 'enc_{:d}'.format(i + 1)) results.append(func(results[-1])) return results[1:] # extract relu4_1 from input image def encode(self, input): for i in range(4): input = getattr(self, 'enc_{:d}'.format(i + 1))(input) return input def calc_content_loss(self, input, target): assert (input.size() == target.size()) assert (target.requires_grad is False) return self.mse_loss(input, target) def calc_style_loss(self, input, target): assert (input.size() == target.size()) assert (target.requires_grad is False) input_mean, input_std = calc_mean_std(input) target_mean, target_std = calc_mean_std(target) return self.mse_loss(input_mean, target_mean) + \ self.mse_loss(input_std, target_std) def forward(self, content, style, alpha=1.0): assert 0 <= alpha <= 1 style_feats = self.encode_with_intermediate(style) content_feat = self.encode(content) t = adain(content_feat, style_feats[-1]) t = alpha * t + (1 - alpha) * content_feat g_t = self.decoder(t) g_t_feats = self.encode_with_intermediate(g_t) loss_c = self.calc_content_loss(g_t_feats[-1], t) loss_s = self.calc_style_loss(g_t_feats[0], style_feats[0]) for i in range(1, 4): loss_s += self.calc_style_loss(g_t_feats[i], style_feats[i]) return loss_c, loss_s