import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Initialize the pipeline with the specific model pipe = pipeline("text-generation", model="JamesBentley/Llama-2-7b-chat-hf-fine-tuned") def respond(message, history, system_message, max_tokens, temperature, top_p): # Build the conversation history for the model messages = [{"role": "system", "content": system_message}] messages.extend([{"role": "user" if role == 'user' else "assistant", "content": content} for role, content in history]) messages.append({"role": "user", "content": message}) # Generate the response using the model response = pipe(messages, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1) # Extract text from response (assumes single response generation) return response[0]['generated_text'] # Setup Gradio interface demo = gr.ChatInterface( fn=respond, inputs=[ gr.Textbox(label="Your message"), gr.Dataframe(headers=["Role", "Content"], label="Conversation History"), gr.Textbox(default="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, default=512, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, default=0.95, label="Top-p (nucleus sampling)") ], outputs=[gr.Textbox(label="Response")] ) if __name__ == "__main__": demo.launch()