import gradio as gr import torch import yt_dlp import os import subprocess import json from threading import Thread from transformers import AutoTokenizer, AutoModelForCausalLM import spaces import time import langdetect import uuid # Hugging Face Token HF_TOKEN = os.environ.get("HF_TOKEN") print("Starting the program...") # Load Qwen Model on CPU model_path = "Qwen/Qwen2.5-7B-Instruct" print(f"Loading model {model_path} on CPU...") tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, # Uses less memory than float32 trust_remote_code=True, low_cpu_mem_usage=True, device_map="auto" # Automatically optimizes model parts for CPU ).to("cpu") model = model.eval() print("Model successfully loaded.") # Generate unique filenames def generate_unique_filename(extension): return f"{uuid.uuid4()}{extension}" # Cleanup temporary files def cleanup_files(*files): for file in files: if file and os.path.exists(file): os.remove(file) print(f"Removed file: {file}") # Extract audio using FFmpeg def extract_audio_ffmpeg(video_path): print("Extracting audio using ffmpeg...") audio_path = generate_unique_filename(".wav") command = ["ffmpeg", "-i", video_path, "-q:a", "0", "-map", "a", audio_path, "-y"] subprocess.Popen(command).wait() # Use Popen to reduce memory usage return audio_path # Transcribe audio def transcribe_audio(file_path): print(f"Starting transcription of file: {file_path}") temp_audio = None if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): print("Video file detected. Extracting audio...") temp_audio = extract_audio_ffmpeg(file_path) file_path = temp_audio output_file = generate_unique_filename(".json") command = [ "insanely-fast-whisper", "--file-name", file_path, "--device-id", "cpu", "--model-name", "openai/whisper-large-v3", "--task", "transcribe", "--timestamp", "chunk", "--transcript-path", output_file ] subprocess.Popen(command).wait() with open(output_file, "r") as f: transcription = json.load(f) result = transcription.get("text", " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])) cleanup_files(output_file) if temp_audio: cleanup_files(temp_audio) return result # Generate summary using Qwen Model def generate_summary_stream(transcription): detected_language = langdetect.detect(transcription) prompt = f"""Summarize the following video transcription in 150-300 words. The summary should be in the same language as the transcription, which is detected as {detected_language}. {transcription[:100000]}...""" # Limiting input size to avoid memory overflow response, history = model.chat(tokenizer, prompt, history=[]) return response # Process video upload def process_uploaded_video(video_path): try: transcription = transcribe_audio(video_path) return transcription, None except Exception as e: return f"Processing error: {str(e)}", None # Gradio UI demo = gr.Blocks() with demo: gr.Markdown(""" # 🎥 AI Video Transcription & Summary Upload a video or provide a YouTube link to get a transcription and AI-generated summary. """) with gr.Tabs(): with gr.TabItem("📤 Video Upload"): video_input = gr.File(label="Upload a video file") video_button = gr.Button("🚀 Process Video", variant="primary") transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True) summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True) summary_button = gr.Button("📝 Generate Summary", variant="secondary") video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output]) summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output]) demo.launch()