File size: 5,075 Bytes
039e024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
from typing import Tuple
import gradio as gr
import tempfile
import numpy as np
import soundfile as sf
import librosa
import matplotlib.pyplot as plt
from audio_separator.separator import Separator
from zero import dynGPU
from youtube import youtube


separators = {
    "BS-RoFormer": Separator(output_dir=tempfile.gettempdir(), output_format="mp3"),
    "Mel-RoFormer": Separator(output_dir=tempfile.gettempdir(), output_format="mp3"),
    "HTDemucs-FT": Separator(output_dir=tempfile.gettempdir(), output_format="mp3"),
}


def load():
    separators["BS-RoFormer"].load_model("model_bs_roformer_ep_317_sdr_12.9755.ckpt")
    separators["Mel-RoFormer"].load_model(
        "model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt"
    )
    separators["HTDemucs-FT"].load_model("htdemucs_ft.yaml")


# sometimes the network might be down, so we retry a few times
for _ in range(3):
    try:
        load()
        break
    except Exception as e:
        print(e)


def merge(outs):
    print(f"Merging {outs}")
    bgm = np.sum(np.array([sf.read(out)[0] for out in outs]), axis=0)
    print(f"Merged shape: {bgm.shape}")
    tmp_file = os.path.join(tempfile.gettempdir(), f"{outs[0].split('/')[-1]}_merged")
    sf.write(tmp_file + ".mp3", bgm, 44100)
    return tmp_file + ".mp3"


def measure_duration(audio: str, model: str) -> int:
    y, sr = librosa.load(audio, sr=44100)
    return int(librosa.get_duration(y=y, sr=sr) / 3.0)


@dynGPU(duration=measure_duration)
def separate(audio: str, model: str) -> Tuple[str, str]:
    separator = separators[model]
    outs = separator.separate(audio)
    outs = [os.path.join(tempfile.gettempdir(), out) for out in outs]
    # roformers
    if len(outs) == 2:
        return outs[1], outs[0]
    # demucs
    if len(outs) == 4:
        bgm = merge(outs[:3])
        return outs[3], bgm
    raise gr.Error("Unknown output format")


def from_youtube(url: str, model: str) -> Tuple[str, str, str]:
    audio = youtube(url)
    return audio, *separate(audio, model)


def plot_spectrogram(audio: str):
    y, sr = librosa.load(audio, sr=44100)
    S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)
    S_dB = librosa.power_to_db(S, ref=np.max)
    fig = plt.figure(figsize=(15, 5))
    librosa.display.specshow(S_dB, sr=sr, x_axis="time", y_axis="mel")
    plt.colorbar(format="%+2.0f dB")
    plt.title("Mel-frequency spectrogram")
    fig.tight_layout()
    return fig


with gr.Blocks() as app:
    with open(os.path.join(os.path.dirname(__file__), "README.md"), "r") as f:
        README = f.read()
        # remove yaml front matter
        blocks = README.split("---")
        if len(blocks) > 1:
            README = "---".join(blocks[2:])

    gr.Markdown(README)

    with gr.Row():
        with gr.Column():
            gr.Markdown("## Upload an audio file")
            audio = gr.Audio(label="Upload an audio file", type="filepath")
        with gr.Column():
            gr.Markdown(
                "## or use a YouTube URL\n\nTry something on [The First Take](https://www.youtube.com/@The_FirstTake)?"
            )
            yt = gr.Textbox(
                label="YouTube URL", placeholder="https://www.youtube.com/watch?v=..."
            )
            yt_btn = gr.Button("Use this YouTube URL")

    with gr.Row():
        model = gr.Radio(
            label="Select a model",
            choices=[s for s in separators.keys()],
            value="BS-RoFormer",
        )
        btn = gr.Button("Separate", variant="primary")

    with gr.Row():
        with gr.Column():
            vocals = gr.Audio(
                label="Vocals", format="mp3", type="filepath", interactive=False
            )
        with gr.Column():
            bgm = gr.Audio(
                label="Background", format="mp3", type="filepath", interactive=False
            )

    with gr.Row():
        with gr.Column():
            vocal_spec = gr.Plot(label="Vocal spectrogram")
        with gr.Column():
            bgm_spec = gr.Plot(label="Background spectrogram")

    gr.Examples(
        examples=[
            # I don't have any good examples, please contribute some!
            # Suno's generated musix seems to have too many artifacts
        ],
        inputs=[audio],
    )

    gr.Markdown(
        """
        - BS-RoFormer: https://arxiv.org/abs/2309.02612
        - Mel-RoFormer: https://arxiv.org/abs/2310.01809
        """
    )

    btn.click(
        fn=separate,
        inputs=[audio, model],
        outputs=[vocals, bgm],
        api_name="separate",
    ).success(
        fn=plot_spectrogram,
        inputs=[vocals],
        outputs=[vocal_spec],
    ).success(
        fn=plot_spectrogram,
        inputs=[bgm],
        outputs=[bgm_spec],
    )

    yt_btn.click(
        fn=from_youtube,
        inputs=[yt, model],
        outputs=[audio, vocals, bgm],
    ).success(
        fn=plot_spectrogram,
        inputs=[vocals],
        outputs=[vocal_spec],
    ).success(
        fn=plot_spectrogram,
        inputs=[bgm],
        outputs=[bgm_spec],
    )

    app.launch(show_error=True)