|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Res2Conv1d + BatchNorm1d + ReLU | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Res2Conv1dReluBn(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | in_channels == out_channels == channels | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4): | 
					
						
						|  | super().__init__() | 
					
						
						|  | assert channels % scale == 0, "{} % {} != 0".format(channels, scale) | 
					
						
						|  | self.scale = scale | 
					
						
						|  | self.width = channels // scale | 
					
						
						|  | self.nums = scale if scale == 1 else scale - 1 | 
					
						
						|  |  | 
					
						
						|  | self.convs = [] | 
					
						
						|  | self.bns = [] | 
					
						
						|  | for i in range(self.nums): | 
					
						
						|  | self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) | 
					
						
						|  | self.bns.append(nn.BatchNorm1d(self.width)) | 
					
						
						|  | self.convs = nn.ModuleList(self.convs) | 
					
						
						|  | self.bns = nn.ModuleList(self.bns) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | out = [] | 
					
						
						|  | spx = torch.split(x, self.width, 1) | 
					
						
						|  | for i in range(self.nums): | 
					
						
						|  | if i == 0: | 
					
						
						|  | sp = spx[i] | 
					
						
						|  | else: | 
					
						
						|  | sp = sp + spx[i] | 
					
						
						|  |  | 
					
						
						|  | sp = self.convs[i](sp) | 
					
						
						|  | sp = self.bns[i](F.relu(sp)) | 
					
						
						|  | out.append(sp) | 
					
						
						|  | if self.scale != 1: | 
					
						
						|  | out.append(spx[self.nums]) | 
					
						
						|  | out = torch.cat(out, dim=1) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Conv1d + BatchNorm1d + ReLU | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Conv1dReluBn(nn.Module): | 
					
						
						|  | def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) | 
					
						
						|  | self.bn = nn.BatchNorm1d(out_channels) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.bn(F.relu(self.conv(x))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ The SE connection of 1D case. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SE_Connect(nn.Module): | 
					
						
						|  | def __init__(self, channels, se_bottleneck_dim=128): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.linear1 = nn.Linear(channels, se_bottleneck_dim) | 
					
						
						|  | self.linear2 = nn.Linear(se_bottleneck_dim, channels) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | out = x.mean(dim=2) | 
					
						
						|  | out = F.relu(self.linear1(out)) | 
					
						
						|  | out = torch.sigmoid(self.linear2(out)) | 
					
						
						|  | out = x * out.unsqueeze(2) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ SE-Res2Block of the ECAPA-TDNN architecture. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SE_Res2Block(nn.Module): | 
					
						
						|  | def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | 
					
						
						|  | self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale) | 
					
						
						|  | self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0) | 
					
						
						|  | self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) | 
					
						
						|  |  | 
					
						
						|  | self.shortcut = None | 
					
						
						|  | if in_channels != out_channels: | 
					
						
						|  | self.shortcut = nn.Conv1d( | 
					
						
						|  | in_channels=in_channels, | 
					
						
						|  | out_channels=out_channels, | 
					
						
						|  | kernel_size=1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | residual = x | 
					
						
						|  | if self.shortcut: | 
					
						
						|  | residual = self.shortcut(x) | 
					
						
						|  |  | 
					
						
						|  | x = self.Conv1dReluBn1(x) | 
					
						
						|  | x = self.Res2Conv1dReluBn(x) | 
					
						
						|  | x = self.Conv1dReluBn2(x) | 
					
						
						|  | x = self.SE_Connect(x) | 
					
						
						|  |  | 
					
						
						|  | return x + residual | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Attentive weighted mean and standard deviation pooling. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AttentiveStatsPool(nn.Module): | 
					
						
						|  | def __init__(self, in_dim, attention_channels=128, global_context_att=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.global_context_att = global_context_att | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if global_context_att: | 
					
						
						|  | self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) | 
					
						
						|  | else: | 
					
						
						|  | self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) | 
					
						
						|  | self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | if self.global_context_att: | 
					
						
						|  | context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) | 
					
						
						|  | context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) | 
					
						
						|  | x_in = torch.cat((x, context_mean, context_std), dim=1) | 
					
						
						|  | else: | 
					
						
						|  | x_in = x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | alpha = torch.tanh(self.linear1(x_in)) | 
					
						
						|  |  | 
					
						
						|  | alpha = torch.softmax(self.linear2(alpha), dim=2) | 
					
						
						|  | mean = torch.sum(alpha * x, dim=2) | 
					
						
						|  | residuals = torch.sum(alpha * (x**2), dim=2) - mean**2 | 
					
						
						|  | std = torch.sqrt(residuals.clamp(min=1e-9)) | 
					
						
						|  | return torch.cat([mean, std], dim=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ECAPA_TDNN(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | feat_dim=80, | 
					
						
						|  | channels=512, | 
					
						
						|  | emb_dim=192, | 
					
						
						|  | global_context_att=False, | 
					
						
						|  | feat_type="wavlm_large", | 
					
						
						|  | sr=16000, | 
					
						
						|  | feature_selection="hidden_states", | 
					
						
						|  | update_extract=False, | 
					
						
						|  | config_path=None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.feat_type = feat_type | 
					
						
						|  | self.feature_selection = feature_selection | 
					
						
						|  | self.update_extract = update_extract | 
					
						
						|  | self.sr = sr | 
					
						
						|  |  | 
					
						
						|  | torch.hub._validate_not_a_forked_repo = lambda a, b, c: True | 
					
						
						|  | try: | 
					
						
						|  | local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main") | 
					
						
						|  | self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path) | 
					
						
						|  | except: | 
					
						
						|  | self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type) | 
					
						
						|  |  | 
					
						
						|  | if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( | 
					
						
						|  | self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention" | 
					
						
						|  | ): | 
					
						
						|  | self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False | 
					
						
						|  | if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( | 
					
						
						|  | self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention" | 
					
						
						|  | ): | 
					
						
						|  | self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False | 
					
						
						|  |  | 
					
						
						|  | self.feat_num = self.get_feat_num() | 
					
						
						|  | self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) | 
					
						
						|  |  | 
					
						
						|  | if feat_type != "fbank" and feat_type != "mfcc": | 
					
						
						|  | freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"] | 
					
						
						|  | for name, param in self.feature_extract.named_parameters(): | 
					
						
						|  | for freeze_val in freeze_list: | 
					
						
						|  | if freeze_val in name: | 
					
						
						|  | param.requires_grad = False | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | if not self.update_extract: | 
					
						
						|  | for param in self.feature_extract.parameters(): | 
					
						
						|  | param.requires_grad = False | 
					
						
						|  |  | 
					
						
						|  | self.instance_norm = nn.InstanceNorm1d(feat_dim) | 
					
						
						|  |  | 
					
						
						|  | self.channels = [channels] * 4 + [1536] | 
					
						
						|  |  | 
					
						
						|  | self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) | 
					
						
						|  | self.layer2 = SE_Res2Block( | 
					
						
						|  | self.channels[0], | 
					
						
						|  | self.channels[1], | 
					
						
						|  | kernel_size=3, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=2, | 
					
						
						|  | dilation=2, | 
					
						
						|  | scale=8, | 
					
						
						|  | se_bottleneck_dim=128, | 
					
						
						|  | ) | 
					
						
						|  | self.layer3 = SE_Res2Block( | 
					
						
						|  | self.channels[1], | 
					
						
						|  | self.channels[2], | 
					
						
						|  | kernel_size=3, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=3, | 
					
						
						|  | dilation=3, | 
					
						
						|  | scale=8, | 
					
						
						|  | se_bottleneck_dim=128, | 
					
						
						|  | ) | 
					
						
						|  | self.layer4 = SE_Res2Block( | 
					
						
						|  | self.channels[2], | 
					
						
						|  | self.channels[3], | 
					
						
						|  | kernel_size=3, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=4, | 
					
						
						|  | dilation=4, | 
					
						
						|  | scale=8, | 
					
						
						|  | se_bottleneck_dim=128, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cat_channels = channels * 3 | 
					
						
						|  | self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) | 
					
						
						|  | self.pooling = AttentiveStatsPool( | 
					
						
						|  | self.channels[-1], attention_channels=128, global_context_att=global_context_att | 
					
						
						|  | ) | 
					
						
						|  | self.bn = nn.BatchNorm1d(self.channels[-1] * 2) | 
					
						
						|  | self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) | 
					
						
						|  |  | 
					
						
						|  | def get_feat_num(self): | 
					
						
						|  | self.feature_extract.eval() | 
					
						
						|  | wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)] | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | features = self.feature_extract(wav) | 
					
						
						|  | select_feature = features[self.feature_selection] | 
					
						
						|  | if isinstance(select_feature, (list, tuple)): | 
					
						
						|  | return len(select_feature) | 
					
						
						|  | else: | 
					
						
						|  | return 1 | 
					
						
						|  |  | 
					
						
						|  | def get_feat(self, x): | 
					
						
						|  | if self.update_extract: | 
					
						
						|  | x = self.feature_extract([sample for sample in x]) | 
					
						
						|  | else: | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | if self.feat_type == "fbank" or self.feat_type == "mfcc": | 
					
						
						|  | x = self.feature_extract(x) + 1e-6 | 
					
						
						|  | else: | 
					
						
						|  | x = self.feature_extract([sample for sample in x]) | 
					
						
						|  |  | 
					
						
						|  | if self.feat_type == "fbank": | 
					
						
						|  | x = x.log() | 
					
						
						|  |  | 
					
						
						|  | if self.feat_type != "fbank" and self.feat_type != "mfcc": | 
					
						
						|  | x = x[self.feature_selection] | 
					
						
						|  | if isinstance(x, (list, tuple)): | 
					
						
						|  | x = torch.stack(x, dim=0) | 
					
						
						|  | else: | 
					
						
						|  | x = x.unsqueeze(0) | 
					
						
						|  | norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) | 
					
						
						|  | x = (norm_weights * x).sum(dim=0) | 
					
						
						|  | x = torch.transpose(x, 1, 2) + 1e-6 | 
					
						
						|  |  | 
					
						
						|  | x = self.instance_norm(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.get_feat(x) | 
					
						
						|  |  | 
					
						
						|  | out1 = self.layer1(x) | 
					
						
						|  | out2 = self.layer2(out1) | 
					
						
						|  | out3 = self.layer3(out2) | 
					
						
						|  | out4 = self.layer4(out3) | 
					
						
						|  |  | 
					
						
						|  | out = torch.cat([out2, out3, out4], dim=1) | 
					
						
						|  | out = F.relu(self.conv(out)) | 
					
						
						|  | out = self.bn(self.pooling(out)) | 
					
						
						|  | out = self.linear(out) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def ECAPA_TDNN_SMALL( | 
					
						
						|  | feat_dim, | 
					
						
						|  | emb_dim=256, | 
					
						
						|  | feat_type="wavlm_large", | 
					
						
						|  | sr=16000, | 
					
						
						|  | feature_selection="hidden_states", | 
					
						
						|  | update_extract=False, | 
					
						
						|  | config_path=None, | 
					
						
						|  | ): | 
					
						
						|  | return ECAPA_TDNN( | 
					
						
						|  | feat_dim=feat_dim, | 
					
						
						|  | channels=512, | 
					
						
						|  | emb_dim=emb_dim, | 
					
						
						|  | feat_type=feat_type, | 
					
						
						|  | sr=sr, | 
					
						
						|  | feature_selection=feature_selection, | 
					
						
						|  | update_extract=update_extract, | 
					
						
						|  | config_path=config_path, | 
					
						
						|  | ) | 
					
						
						|  |  |