|  | import os | 
					
						
						|  | import sys | 
					
						
						|  |  | 
					
						
						|  | import tempfile | 
					
						
						|  | import random | 
					
						
						|  | from transformers import pipeline | 
					
						
						|  | import gradio as gr | 
					
						
						|  | import torch | 
					
						
						|  | import gc | 
					
						
						|  | import click | 
					
						
						|  | import torchaudio | 
					
						
						|  | from glob import glob | 
					
						
						|  | import librosa | 
					
						
						|  | import numpy as np | 
					
						
						|  | from scipy.io import wavfile | 
					
						
						|  | import shutil | 
					
						
						|  | import time | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | from model.utils import convert_char_to_pinyin | 
					
						
						|  | import signal | 
					
						
						|  | import psutil | 
					
						
						|  | import platform | 
					
						
						|  | import subprocess | 
					
						
						|  | from datasets.arrow_writer import ArrowWriter | 
					
						
						|  | from datasets import Dataset as Dataset_ | 
					
						
						|  | from api import F5TTS | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | training_process = None | 
					
						
						|  | system = platform.system() | 
					
						
						|  | python_executable = sys.executable or "python" | 
					
						
						|  | tts_api = None | 
					
						
						|  | last_checkpoint = "" | 
					
						
						|  | last_device = "" | 
					
						
						|  |  | 
					
						
						|  | path_data = "data" | 
					
						
						|  |  | 
					
						
						|  | device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | 
					
						
						|  |  | 
					
						
						|  | pipe = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_audio_duration(audio_path): | 
					
						
						|  | """Calculate the duration of an audio file.""" | 
					
						
						|  | audio, sample_rate = torchaudio.load(audio_path) | 
					
						
						|  | num_channels = audio.shape[0] | 
					
						
						|  | return audio.shape[1] / (sample_rate * num_channels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def clear_text(text): | 
					
						
						|  | """Clean and prepare text by lowering the case and stripping whitespace.""" | 
					
						
						|  | return text.lower().strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_rms( | 
					
						
						|  | y, | 
					
						
						|  | frame_length=2048, | 
					
						
						|  | hop_length=512, | 
					
						
						|  | pad_mode="constant", | 
					
						
						|  | ): | 
					
						
						|  | padding = (int(frame_length // 2), int(frame_length // 2)) | 
					
						
						|  | y = np.pad(y, padding, mode=pad_mode) | 
					
						
						|  |  | 
					
						
						|  | axis = -1 | 
					
						
						|  |  | 
					
						
						|  | out_strides = y.strides + tuple([y.strides[axis]]) | 
					
						
						|  |  | 
					
						
						|  | x_shape_trimmed = list(y.shape) | 
					
						
						|  | x_shape_trimmed[axis] -= frame_length - 1 | 
					
						
						|  | out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) | 
					
						
						|  | xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides) | 
					
						
						|  | if axis < 0: | 
					
						
						|  | target_axis = axis - 1 | 
					
						
						|  | else: | 
					
						
						|  | target_axis = axis + 1 | 
					
						
						|  | xw = np.moveaxis(xw, -1, target_axis) | 
					
						
						|  |  | 
					
						
						|  | slices = [slice(None)] * xw.ndim | 
					
						
						|  | slices[axis] = slice(0, None, hop_length) | 
					
						
						|  | x = xw[tuple(slices)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) | 
					
						
						|  |  | 
					
						
						|  | return np.sqrt(power) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Slicer: | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | sr: int, | 
					
						
						|  | threshold: float = -40.0, | 
					
						
						|  | min_length: int = 2000, | 
					
						
						|  | min_interval: int = 300, | 
					
						
						|  | hop_size: int = 20, | 
					
						
						|  | max_sil_kept: int = 2000, | 
					
						
						|  | ): | 
					
						
						|  | if not min_length >= min_interval >= hop_size: | 
					
						
						|  | raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size") | 
					
						
						|  | if not max_sil_kept >= hop_size: | 
					
						
						|  | raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size") | 
					
						
						|  | min_interval = sr * min_interval / 1000 | 
					
						
						|  | self.threshold = 10 ** (threshold / 20.0) | 
					
						
						|  | self.hop_size = round(sr * hop_size / 1000) | 
					
						
						|  | self.win_size = min(round(min_interval), 4 * self.hop_size) | 
					
						
						|  | self.min_length = round(sr * min_length / 1000 / self.hop_size) | 
					
						
						|  | self.min_interval = round(min_interval / self.hop_size) | 
					
						
						|  | self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) | 
					
						
						|  |  | 
					
						
						|  | def _apply_slice(self, waveform, begin, end): | 
					
						
						|  | if len(waveform.shape) > 1: | 
					
						
						|  | return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)] | 
					
						
						|  | else: | 
					
						
						|  | return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def slice(self, waveform): | 
					
						
						|  | if len(waveform.shape) > 1: | 
					
						
						|  | samples = waveform.mean(axis=0) | 
					
						
						|  | else: | 
					
						
						|  | samples = waveform | 
					
						
						|  | if samples.shape[0] <= self.min_length: | 
					
						
						|  | return [waveform] | 
					
						
						|  | rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) | 
					
						
						|  | sil_tags = [] | 
					
						
						|  | silence_start = None | 
					
						
						|  | clip_start = 0 | 
					
						
						|  | for i, rms in enumerate(rms_list): | 
					
						
						|  |  | 
					
						
						|  | if rms < self.threshold: | 
					
						
						|  |  | 
					
						
						|  | if silence_start is None: | 
					
						
						|  | silence_start = i | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | if silence_start is None: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | is_leading_silence = silence_start == 0 and i > self.max_sil_kept | 
					
						
						|  | need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length | 
					
						
						|  | if not is_leading_silence and not need_slice_middle: | 
					
						
						|  | silence_start = None | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | if i - silence_start <= self.max_sil_kept: | 
					
						
						|  | pos = rms_list[silence_start : i + 1].argmin() + silence_start | 
					
						
						|  | if silence_start == 0: | 
					
						
						|  | sil_tags.append((0, pos)) | 
					
						
						|  | else: | 
					
						
						|  | sil_tags.append((pos, pos)) | 
					
						
						|  | clip_start = pos | 
					
						
						|  | elif i - silence_start <= self.max_sil_kept * 2: | 
					
						
						|  | pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin() | 
					
						
						|  | pos += i - self.max_sil_kept | 
					
						
						|  | pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start | 
					
						
						|  | pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept | 
					
						
						|  | if silence_start == 0: | 
					
						
						|  | sil_tags.append((0, pos_r)) | 
					
						
						|  | clip_start = pos_r | 
					
						
						|  | else: | 
					
						
						|  | sil_tags.append((min(pos_l, pos), max(pos_r, pos))) | 
					
						
						|  | clip_start = max(pos_r, pos) | 
					
						
						|  | else: | 
					
						
						|  | pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start | 
					
						
						|  | pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept | 
					
						
						|  | if silence_start == 0: | 
					
						
						|  | sil_tags.append((0, pos_r)) | 
					
						
						|  | else: | 
					
						
						|  | sil_tags.append((pos_l, pos_r)) | 
					
						
						|  | clip_start = pos_r | 
					
						
						|  | silence_start = None | 
					
						
						|  |  | 
					
						
						|  | total_frames = rms_list.shape[0] | 
					
						
						|  | if silence_start is not None and total_frames - silence_start >= self.min_interval: | 
					
						
						|  | silence_end = min(total_frames, silence_start + self.max_sil_kept) | 
					
						
						|  | pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start | 
					
						
						|  | sil_tags.append((pos, total_frames + 1)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(sil_tags) == 0: | 
					
						
						|  | return [[waveform, 0, int(total_frames * self.hop_size)]] | 
					
						
						|  | else: | 
					
						
						|  | chunks = [] | 
					
						
						|  | if sil_tags[0][0] > 0: | 
					
						
						|  | chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)]) | 
					
						
						|  | for i in range(len(sil_tags) - 1): | 
					
						
						|  | chunks.append( | 
					
						
						|  | [ | 
					
						
						|  | self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), | 
					
						
						|  | int(sil_tags[i][1] * self.hop_size), | 
					
						
						|  | int(sil_tags[i + 1][0] * self.hop_size), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | if sil_tags[-1][1] < total_frames: | 
					
						
						|  | chunks.append( | 
					
						
						|  | [ | 
					
						
						|  | self._apply_slice(waveform, sil_tags[-1][1], total_frames), | 
					
						
						|  | int(sil_tags[-1][1] * self.hop_size), | 
					
						
						|  | int(total_frames * self.hop_size), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | return chunks | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def terminate_process_tree(pid, including_parent=True): | 
					
						
						|  | try: | 
					
						
						|  | parent = psutil.Process(pid) | 
					
						
						|  | except psutil.NoSuchProcess: | 
					
						
						|  |  | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | children = parent.children(recursive=True) | 
					
						
						|  | for child in children: | 
					
						
						|  | try: | 
					
						
						|  | os.kill(child.pid, signal.SIGTERM) | 
					
						
						|  | except OSError: | 
					
						
						|  | pass | 
					
						
						|  | if including_parent: | 
					
						
						|  | try: | 
					
						
						|  | os.kill(parent.pid, signal.SIGTERM) | 
					
						
						|  | except OSError: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def terminate_process(pid): | 
					
						
						|  | if system == "Windows": | 
					
						
						|  | cmd = f"taskkill /t /f /pid {pid}" | 
					
						
						|  | os.system(cmd) | 
					
						
						|  | else: | 
					
						
						|  | terminate_process_tree(pid) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def start_training( | 
					
						
						|  | dataset_name="", | 
					
						
						|  | exp_name="F5TTS_Base", | 
					
						
						|  | learning_rate=1e-4, | 
					
						
						|  | batch_size_per_gpu=400, | 
					
						
						|  | batch_size_type="frame", | 
					
						
						|  | max_samples=64, | 
					
						
						|  | grad_accumulation_steps=1, | 
					
						
						|  | max_grad_norm=1.0, | 
					
						
						|  | epochs=11, | 
					
						
						|  | num_warmup_updates=200, | 
					
						
						|  | save_per_updates=400, | 
					
						
						|  | last_per_steps=800, | 
					
						
						|  | finetune=True, | 
					
						
						|  | ): | 
					
						
						|  | global training_process, tts_api | 
					
						
						|  |  | 
					
						
						|  | if tts_api is not None: | 
					
						
						|  | del tts_api | 
					
						
						|  | gc.collect() | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | tts_api = None | 
					
						
						|  |  | 
					
						
						|  | path_project = os.path.join(path_data, dataset_name + "_pinyin") | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isdir(path_project): | 
					
						
						|  | yield ( | 
					
						
						|  | f"There is not project with name {dataset_name}", | 
					
						
						|  | gr.update(interactive=True), | 
					
						
						|  | gr.update(interactive=False), | 
					
						
						|  | ) | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | file_raw = os.path.join(path_project, "raw.arrow") | 
					
						
						|  | if not os.path.isfile(file_raw): | 
					
						
						|  | yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False) | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_process is not None: | 
					
						
						|  | return "Train run already!", gr.update(interactive=False), gr.update(interactive=True) | 
					
						
						|  |  | 
					
						
						|  | yield "start train", gr.update(interactive=False), gr.update(interactive=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cmd = ( | 
					
						
						|  | f"accelerate launch finetune-cli.py --exp_name {exp_name} " | 
					
						
						|  | f"--learning_rate {learning_rate} " | 
					
						
						|  | f"--batch_size_per_gpu {batch_size_per_gpu} " | 
					
						
						|  | f"--batch_size_type {batch_size_type} " | 
					
						
						|  | f"--max_samples {max_samples} " | 
					
						
						|  | f"--grad_accumulation_steps {grad_accumulation_steps} " | 
					
						
						|  | f"--max_grad_norm {max_grad_norm} " | 
					
						
						|  | f"--epochs {epochs} " | 
					
						
						|  | f"--num_warmup_updates {num_warmup_updates} " | 
					
						
						|  | f"--save_per_updates {save_per_updates} " | 
					
						
						|  | f"--last_per_steps {last_per_steps} " | 
					
						
						|  | f"--dataset_name {dataset_name}" | 
					
						
						|  | ) | 
					
						
						|  | if finetune: | 
					
						
						|  | cmd += f" --finetune {finetune}" | 
					
						
						|  |  | 
					
						
						|  | print(cmd) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | training_process = subprocess.Popen(cmd, shell=True) | 
					
						
						|  |  | 
					
						
						|  | time.sleep(5) | 
					
						
						|  | yield "train start", gr.update(interactive=False), gr.update(interactive=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | training_process.wait() | 
					
						
						|  | time.sleep(1) | 
					
						
						|  |  | 
					
						
						|  | if training_process is None: | 
					
						
						|  | text_info = "train stop" | 
					
						
						|  | else: | 
					
						
						|  | text_info = "train complete !" | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  |  | 
					
						
						|  | text_info = f"An error occurred: {str(e)}" | 
					
						
						|  |  | 
					
						
						|  | training_process = None | 
					
						
						|  |  | 
					
						
						|  | yield text_info, gr.update(interactive=True), gr.update(interactive=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def stop_training(): | 
					
						
						|  | global training_process | 
					
						
						|  | if training_process is None: | 
					
						
						|  | return "Train not run !", gr.update(interactive=True), gr.update(interactive=False) | 
					
						
						|  | terminate_process_tree(training_process.pid) | 
					
						
						|  | training_process = None | 
					
						
						|  | return "train stop", gr.update(interactive=True), gr.update(interactive=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_data_project(name): | 
					
						
						|  | name += "_pinyin" | 
					
						
						|  | os.makedirs(os.path.join(path_data, name), exist_ok=True) | 
					
						
						|  | os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transcribe(file_audio, language="english"): | 
					
						
						|  | global pipe | 
					
						
						|  |  | 
					
						
						|  | if pipe is None: | 
					
						
						|  | pipe = pipeline( | 
					
						
						|  | "automatic-speech-recognition", | 
					
						
						|  | model="openai/whisper-large-v3-turbo", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_transcribe = pipe( | 
					
						
						|  | file_audio, | 
					
						
						|  | chunk_length_s=30, | 
					
						
						|  | batch_size=128, | 
					
						
						|  | generate_kwargs={"task": "transcribe", "language": language}, | 
					
						
						|  | return_timestamps=False, | 
					
						
						|  | )["text"].strip() | 
					
						
						|  | return text_transcribe | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()): | 
					
						
						|  | name_project += "_pinyin" | 
					
						
						|  | path_project = os.path.join(path_data, name_project) | 
					
						
						|  | path_dataset = os.path.join(path_project, "dataset") | 
					
						
						|  | path_project_wavs = os.path.join(path_project, "wavs") | 
					
						
						|  | file_metadata = os.path.join(path_project, "metadata.csv") | 
					
						
						|  |  | 
					
						
						|  | if audio_files is None: | 
					
						
						|  | return "You need to load an audio file." | 
					
						
						|  |  | 
					
						
						|  | if os.path.isdir(path_project_wavs): | 
					
						
						|  | shutil.rmtree(path_project_wavs) | 
					
						
						|  |  | 
					
						
						|  | if os.path.isfile(file_metadata): | 
					
						
						|  | os.remove(file_metadata) | 
					
						
						|  |  | 
					
						
						|  | os.makedirs(path_project_wavs, exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  | if user: | 
					
						
						|  | file_audios = [ | 
					
						
						|  | file | 
					
						
						|  | for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac") | 
					
						
						|  | for file in glob(os.path.join(path_dataset, format)) | 
					
						
						|  | ] | 
					
						
						|  | if file_audios == []: | 
					
						
						|  | return "No audio file was found in the dataset." | 
					
						
						|  | else: | 
					
						
						|  | file_audios = audio_files | 
					
						
						|  |  | 
					
						
						|  | alpha = 0.5 | 
					
						
						|  | _max = 1.0 | 
					
						
						|  | slicer = Slicer(24000) | 
					
						
						|  |  | 
					
						
						|  | num = 0 | 
					
						
						|  | error_num = 0 | 
					
						
						|  | data = "" | 
					
						
						|  | for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))): | 
					
						
						|  | audio, _ = librosa.load(file_audio, sr=24000, mono=True) | 
					
						
						|  |  | 
					
						
						|  | list_slicer = slicer.slice(audio) | 
					
						
						|  | for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"): | 
					
						
						|  | name_segment = os.path.join(f"segment_{num}") | 
					
						
						|  | file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav") | 
					
						
						|  |  | 
					
						
						|  | tmp_max = np.abs(chunk).max() | 
					
						
						|  | if tmp_max > 1: | 
					
						
						|  | chunk /= tmp_max | 
					
						
						|  | chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk | 
					
						
						|  | wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16)) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | text = transcribe(file_segment, language) | 
					
						
						|  | text = text.lower().strip().replace('"', "") | 
					
						
						|  |  | 
					
						
						|  | data += f"{name_segment}|{text}\n" | 
					
						
						|  |  | 
					
						
						|  | num += 1 | 
					
						
						|  | except: | 
					
						
						|  | error_num += 1 | 
					
						
						|  |  | 
					
						
						|  | with open(file_metadata, "w", encoding="utf-8") as f: | 
					
						
						|  | f.write(data) | 
					
						
						|  |  | 
					
						
						|  | if error_num != []: | 
					
						
						|  | error_text = f"\nerror files : {error_num}" | 
					
						
						|  | else: | 
					
						
						|  | error_text = "" | 
					
						
						|  |  | 
					
						
						|  | return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def format_seconds_to_hms(seconds): | 
					
						
						|  | hours = int(seconds / 3600) | 
					
						
						|  | minutes = int((seconds % 3600) / 60) | 
					
						
						|  | seconds = seconds % 60 | 
					
						
						|  | return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_metadata(name_project, progress=gr.Progress()): | 
					
						
						|  | name_project += "_pinyin" | 
					
						
						|  | path_project = os.path.join(path_data, name_project) | 
					
						
						|  | path_project_wavs = os.path.join(path_project, "wavs") | 
					
						
						|  | file_metadata = os.path.join(path_project, "metadata.csv") | 
					
						
						|  | file_raw = os.path.join(path_project, "raw.arrow") | 
					
						
						|  | file_duration = os.path.join(path_project, "duration.json") | 
					
						
						|  | file_vocab = os.path.join(path_project, "vocab.txt") | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isfile(file_metadata): | 
					
						
						|  | return "The file was not found in " + file_metadata | 
					
						
						|  |  | 
					
						
						|  | with open(file_metadata, "r", encoding="utf-8") as f: | 
					
						
						|  | data = f.read() | 
					
						
						|  |  | 
					
						
						|  | audio_path_list = [] | 
					
						
						|  | text_list = [] | 
					
						
						|  | duration_list = [] | 
					
						
						|  |  | 
					
						
						|  | count = data.split("\n") | 
					
						
						|  | lenght = 0 | 
					
						
						|  | result = [] | 
					
						
						|  | error_files = [] | 
					
						
						|  | for line in progress.tqdm(data.split("\n"), total=count): | 
					
						
						|  | sp_line = line.split("|") | 
					
						
						|  | if len(sp_line) != 2: | 
					
						
						|  | continue | 
					
						
						|  | name_audio, text = sp_line[:2] | 
					
						
						|  |  | 
					
						
						|  | file_audio = os.path.join(path_project_wavs, name_audio + ".wav") | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isfile(file_audio): | 
					
						
						|  | error_files.append(file_audio) | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | duraction = get_audio_duration(file_audio) | 
					
						
						|  | if duraction < 2 and duraction > 15: | 
					
						
						|  | continue | 
					
						
						|  | if len(text) < 4: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | text = clear_text(text) | 
					
						
						|  | text = convert_char_to_pinyin([text], polyphone=True)[0] | 
					
						
						|  |  | 
					
						
						|  | audio_path_list.append(file_audio) | 
					
						
						|  | duration_list.append(duraction) | 
					
						
						|  | text_list.append(text) | 
					
						
						|  |  | 
					
						
						|  | result.append({"audio_path": file_audio, "text": text, "duration": duraction}) | 
					
						
						|  |  | 
					
						
						|  | lenght += duraction | 
					
						
						|  |  | 
					
						
						|  | if duration_list == []: | 
					
						
						|  | error_files_text = "\n".join(error_files) | 
					
						
						|  | return f"Error: No audio files found in the specified path : \n{error_files_text}" | 
					
						
						|  |  | 
					
						
						|  | min_second = round(min(duration_list), 2) | 
					
						
						|  | max_second = round(max(duration_list), 2) | 
					
						
						|  |  | 
					
						
						|  | with ArrowWriter(path=file_raw, writer_batch_size=1) as writer: | 
					
						
						|  | for line in progress.tqdm(result, total=len(result), desc="prepare data"): | 
					
						
						|  | writer.write(line) | 
					
						
						|  |  | 
					
						
						|  | with open(file_duration, "w", encoding="utf-8") as f: | 
					
						
						|  | json.dump({"duration": duration_list}, f, ensure_ascii=False) | 
					
						
						|  |  | 
					
						
						|  | file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt" | 
					
						
						|  | if not os.path.isfile(file_vocab_finetune): | 
					
						
						|  | return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!" | 
					
						
						|  | shutil.copy2(file_vocab_finetune, file_vocab) | 
					
						
						|  |  | 
					
						
						|  | if error_files != []: | 
					
						
						|  | error_text = "error files\n" + "\n".join(error_files) | 
					
						
						|  | else: | 
					
						
						|  | error_text = "" | 
					
						
						|  |  | 
					
						
						|  | return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n{error_text}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_user(value): | 
					
						
						|  | return gr.update(visible=not value), gr.update(visible=value) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def calculate_train( | 
					
						
						|  | name_project, | 
					
						
						|  | batch_size_type, | 
					
						
						|  | max_samples, | 
					
						
						|  | learning_rate, | 
					
						
						|  | num_warmup_updates, | 
					
						
						|  | save_per_updates, | 
					
						
						|  | last_per_steps, | 
					
						
						|  | finetune, | 
					
						
						|  | ): | 
					
						
						|  | name_project += "_pinyin" | 
					
						
						|  | path_project = os.path.join(path_data, name_project) | 
					
						
						|  | file_duraction = os.path.join(path_project, "duration.json") | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isfile(file_duraction): | 
					
						
						|  | return ( | 
					
						
						|  | 1000, | 
					
						
						|  | max_samples, | 
					
						
						|  | num_warmup_updates, | 
					
						
						|  | save_per_updates, | 
					
						
						|  | last_per_steps, | 
					
						
						|  | "project not found !", | 
					
						
						|  | learning_rate, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with open(file_duraction, "r") as file: | 
					
						
						|  | data = json.load(file) | 
					
						
						|  |  | 
					
						
						|  | duration_list = data["duration"] | 
					
						
						|  |  | 
					
						
						|  | samples = len(duration_list) | 
					
						
						|  |  | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | gpu_properties = torch.cuda.get_device_properties(0) | 
					
						
						|  | total_memory = gpu_properties.total_memory / (1024**3) | 
					
						
						|  | elif torch.backends.mps.is_available(): | 
					
						
						|  | total_memory = psutil.virtual_memory().available / (1024**3) | 
					
						
						|  |  | 
					
						
						|  | if batch_size_type == "frame": | 
					
						
						|  | batch = int(total_memory * 0.5) | 
					
						
						|  | batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch) | 
					
						
						|  | batch_size_per_gpu = int(38400 / batch) | 
					
						
						|  | else: | 
					
						
						|  | batch_size_per_gpu = int(total_memory / 8) | 
					
						
						|  | batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu) | 
					
						
						|  | batch = batch_size_per_gpu | 
					
						
						|  |  | 
					
						
						|  | if batch_size_per_gpu <= 0: | 
					
						
						|  | batch_size_per_gpu = 1 | 
					
						
						|  |  | 
					
						
						|  | if samples < 64: | 
					
						
						|  | max_samples = int(samples * 0.25) | 
					
						
						|  | else: | 
					
						
						|  | max_samples = 64 | 
					
						
						|  |  | 
					
						
						|  | num_warmup_updates = int(samples * 0.05) | 
					
						
						|  | save_per_updates = int(samples * 0.10) | 
					
						
						|  | last_per_steps = int(save_per_updates * 5) | 
					
						
						|  |  | 
					
						
						|  | max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples) | 
					
						
						|  | num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates) | 
					
						
						|  | save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates) | 
					
						
						|  | last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps) | 
					
						
						|  |  | 
					
						
						|  | if finetune: | 
					
						
						|  | learning_rate = 1e-5 | 
					
						
						|  | else: | 
					
						
						|  | learning_rate = 7.5e-5 | 
					
						
						|  |  | 
					
						
						|  | return batch_size_per_gpu, max_samples, num_warmup_updates, save_per_updates, last_per_steps, samples, learning_rate | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None: | 
					
						
						|  | try: | 
					
						
						|  | checkpoint = torch.load(checkpoint_path) | 
					
						
						|  | print("Original Checkpoint Keys:", checkpoint.keys()) | 
					
						
						|  |  | 
					
						
						|  | ema_model_state_dict = checkpoint.get("ema_model_state_dict", None) | 
					
						
						|  |  | 
					
						
						|  | if ema_model_state_dict is not None: | 
					
						
						|  | new_checkpoint = {"ema_model_state_dict": ema_model_state_dict} | 
					
						
						|  | torch.save(new_checkpoint, new_checkpoint_path) | 
					
						
						|  | return f"New checkpoint saved at: {new_checkpoint_path}" | 
					
						
						|  | else: | 
					
						
						|  | return "No 'ema_model_state_dict' found in the checkpoint." | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return f"An error occurred: {e}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def vocab_check(project_name): | 
					
						
						|  | name_project = project_name + "_pinyin" | 
					
						
						|  | path_project = os.path.join(path_data, name_project) | 
					
						
						|  |  | 
					
						
						|  | file_metadata = os.path.join(path_project, "metadata.csv") | 
					
						
						|  |  | 
					
						
						|  | file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt" | 
					
						
						|  | if not os.path.isfile(file_vocab): | 
					
						
						|  | return f"the file {file_vocab} not found !" | 
					
						
						|  |  | 
					
						
						|  | with open(file_vocab, "r", encoding="utf-8") as f: | 
					
						
						|  | data = f.read() | 
					
						
						|  |  | 
					
						
						|  | vocab = data.split("\n") | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isfile(file_metadata): | 
					
						
						|  | return f"the file {file_metadata} not found !" | 
					
						
						|  |  | 
					
						
						|  | with open(file_metadata, "r", encoding="utf-8") as f: | 
					
						
						|  | data = f.read() | 
					
						
						|  |  | 
					
						
						|  | miss_symbols = [] | 
					
						
						|  | miss_symbols_keep = {} | 
					
						
						|  | for item in data.split("\n"): | 
					
						
						|  | sp = item.split("|") | 
					
						
						|  | if len(sp) != 2: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | text = sp[1].lower().strip() | 
					
						
						|  |  | 
					
						
						|  | for t in text: | 
					
						
						|  | if t not in vocab and t not in miss_symbols_keep: | 
					
						
						|  | miss_symbols.append(t) | 
					
						
						|  | miss_symbols_keep[t] = t | 
					
						
						|  | if miss_symbols == []: | 
					
						
						|  | info = "You can train using your language !" | 
					
						
						|  | else: | 
					
						
						|  | info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols) | 
					
						
						|  |  | 
					
						
						|  | return info | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_random_sample_prepare(project_name): | 
					
						
						|  | name_project = project_name + "_pinyin" | 
					
						
						|  | path_project = os.path.join(path_data, name_project) | 
					
						
						|  | file_arrow = os.path.join(path_project, "raw.arrow") | 
					
						
						|  | if not os.path.isfile(file_arrow): | 
					
						
						|  | return "", None | 
					
						
						|  | dataset = Dataset_.from_file(file_arrow) | 
					
						
						|  | random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0]) | 
					
						
						|  | text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]" | 
					
						
						|  | audio_path = random_sample["audio_path"][0] | 
					
						
						|  | return text, audio_path | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_random_sample_transcribe(project_name): | 
					
						
						|  | name_project = project_name + "_pinyin" | 
					
						
						|  | path_project = os.path.join(path_data, name_project) | 
					
						
						|  | file_metadata = os.path.join(path_project, "metadata.csv") | 
					
						
						|  | if not os.path.isfile(file_metadata): | 
					
						
						|  | return "", None | 
					
						
						|  |  | 
					
						
						|  | data = "" | 
					
						
						|  | with open(file_metadata, "r", encoding="utf-8") as f: | 
					
						
						|  | data = f.read() | 
					
						
						|  |  | 
					
						
						|  | list_data = [] | 
					
						
						|  | for item in data.split("\n"): | 
					
						
						|  | sp = item.split("|") | 
					
						
						|  | if len(sp) != 2: | 
					
						
						|  | continue | 
					
						
						|  | list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]]) | 
					
						
						|  |  | 
					
						
						|  | if list_data == []: | 
					
						
						|  | return "", None | 
					
						
						|  |  | 
					
						
						|  | random_item = random.choice(list_data) | 
					
						
						|  |  | 
					
						
						|  | return random_item[1], random_item[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_random_sample_infer(project_name): | 
					
						
						|  | text, audio = get_random_sample_transcribe(project_name) | 
					
						
						|  | return ( | 
					
						
						|  | text, | 
					
						
						|  | text, | 
					
						
						|  | audio, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step): | 
					
						
						|  | global last_checkpoint, last_device, tts_api | 
					
						
						|  |  | 
					
						
						|  | if not os.path.isfile(file_checkpoint): | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | if training_process is not None: | 
					
						
						|  | device_test = "cpu" | 
					
						
						|  | else: | 
					
						
						|  | device_test = None | 
					
						
						|  |  | 
					
						
						|  | if last_checkpoint != file_checkpoint or last_device != device_test: | 
					
						
						|  | if last_checkpoint != file_checkpoint: | 
					
						
						|  | last_checkpoint = file_checkpoint | 
					
						
						|  | if last_device != device_test: | 
					
						
						|  | last_device = device_test | 
					
						
						|  |  | 
					
						
						|  | tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test) | 
					
						
						|  |  | 
					
						
						|  | print("update", device_test, file_checkpoint) | 
					
						
						|  |  | 
					
						
						|  | with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | 
					
						
						|  | tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name) | 
					
						
						|  | return f.name | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks() as app: | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | project_name = gr.Textbox(label="project name", value="my_speak") | 
					
						
						|  | bt_create = gr.Button("create new project") | 
					
						
						|  |  | 
					
						
						|  | bt_create.click(fn=create_data_project, inputs=[project_name]) | 
					
						
						|  |  | 
					
						
						|  | with gr.Tabs(): | 
					
						
						|  | with gr.TabItem("transcribe Data"): | 
					
						
						|  | ch_manual = gr.Checkbox(label="user", value=False) | 
					
						
						|  |  | 
					
						
						|  | mark_info_transcribe = gr.Markdown( | 
					
						
						|  | """```plaintext | 
					
						
						|  | Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. | 
					
						
						|  |  | 
					
						
						|  | my_speak/ | 
					
						
						|  | β | 
					
						
						|  | βββ dataset/ | 
					
						
						|  | βββ audio1.wav | 
					
						
						|  | βββ audio2.wav | 
					
						
						|  | ... | 
					
						
						|  | ```""", | 
					
						
						|  | visible=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple") | 
					
						
						|  | txt_lang = gr.Text(label="Language", value="english") | 
					
						
						|  | bt_transcribe = bt_create = gr.Button("transcribe") | 
					
						
						|  | txt_info_transcribe = gr.Text(label="info", value="") | 
					
						
						|  | bt_transcribe.click( | 
					
						
						|  | fn=transcribe_all, | 
					
						
						|  | inputs=[project_name, audio_speaker, txt_lang, ch_manual], | 
					
						
						|  | outputs=[txt_info_transcribe], | 
					
						
						|  | ) | 
					
						
						|  | ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe]) | 
					
						
						|  |  | 
					
						
						|  | random_sample_transcribe = gr.Button("random sample") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | random_text_transcribe = gr.Text(label="Text") | 
					
						
						|  | random_audio_transcribe = gr.Audio(label="Audio", type="filepath") | 
					
						
						|  |  | 
					
						
						|  | random_sample_transcribe.click( | 
					
						
						|  | fn=get_random_sample_transcribe, | 
					
						
						|  | inputs=[project_name], | 
					
						
						|  | outputs=[random_text_transcribe, random_audio_transcribe], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("prepare Data"): | 
					
						
						|  | gr.Markdown( | 
					
						
						|  | """```plaintext | 
					
						
						|  | place all your wavs folder and your metadata.csv file in {your name project} | 
					
						
						|  | my_speak/ | 
					
						
						|  | β | 
					
						
						|  | βββ wavs/ | 
					
						
						|  | β   βββ audio1.wav | 
					
						
						|  | β   βββ audio2.wav | 
					
						
						|  | |   ... | 
					
						
						|  | β | 
					
						
						|  | βββ metadata.csv | 
					
						
						|  |  | 
					
						
						|  | file format metadata.csv | 
					
						
						|  |  | 
					
						
						|  | audio1|text1 | 
					
						
						|  | audio2|text1 | 
					
						
						|  | ... | 
					
						
						|  |  | 
					
						
						|  | ```""" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bt_prepare = bt_create = gr.Button("prepare") | 
					
						
						|  | txt_info_prepare = gr.Text(label="info", value="") | 
					
						
						|  | bt_prepare.click(fn=create_metadata, inputs=[project_name], outputs=[txt_info_prepare]) | 
					
						
						|  |  | 
					
						
						|  | random_sample_prepare = gr.Button("random sample") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | random_text_prepare = gr.Text(label="Pinyin") | 
					
						
						|  | random_audio_prepare = gr.Audio(label="Audio", type="filepath") | 
					
						
						|  |  | 
					
						
						|  | random_sample_prepare.click( | 
					
						
						|  | fn=get_random_sample_prepare, inputs=[project_name], outputs=[random_text_prepare, random_audio_prepare] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("train Data"): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | bt_calculate = bt_create = gr.Button("Auto Settings") | 
					
						
						|  | ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True) | 
					
						
						|  | lb_samples = gr.Label(label="samples") | 
					
						
						|  | batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base") | 
					
						
						|  | learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000) | 
					
						
						|  | max_samples = gr.Number(label="Max Samples", value=64) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1) | 
					
						
						|  | max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | epochs = gr.Number(label="Epochs", value=10) | 
					
						
						|  | num_warmup_updates = gr.Number(label="Warmup Updates", value=5) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | save_per_updates = gr.Number(label="Save per Updates", value=10) | 
					
						
						|  | last_per_steps = gr.Number(label="Last per Steps", value=50) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | start_button = gr.Button("Start Training") | 
					
						
						|  | stop_button = gr.Button("Stop Training", interactive=False) | 
					
						
						|  |  | 
					
						
						|  | txt_info_train = gr.Text(label="info", value="") | 
					
						
						|  | start_button.click( | 
					
						
						|  | fn=start_training, | 
					
						
						|  | inputs=[ | 
					
						
						|  | project_name, | 
					
						
						|  | exp_name, | 
					
						
						|  | learning_rate, | 
					
						
						|  | batch_size_per_gpu, | 
					
						
						|  | batch_size_type, | 
					
						
						|  | max_samples, | 
					
						
						|  | grad_accumulation_steps, | 
					
						
						|  | max_grad_norm, | 
					
						
						|  | epochs, | 
					
						
						|  | num_warmup_updates, | 
					
						
						|  | save_per_updates, | 
					
						
						|  | last_per_steps, | 
					
						
						|  | ch_finetune, | 
					
						
						|  | ], | 
					
						
						|  | outputs=[txt_info_train, start_button, stop_button], | 
					
						
						|  | ) | 
					
						
						|  | stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button]) | 
					
						
						|  | bt_calculate.click( | 
					
						
						|  | fn=calculate_train, | 
					
						
						|  | inputs=[ | 
					
						
						|  | project_name, | 
					
						
						|  | batch_size_type, | 
					
						
						|  | max_samples, | 
					
						
						|  | learning_rate, | 
					
						
						|  | num_warmup_updates, | 
					
						
						|  | save_per_updates, | 
					
						
						|  | last_per_steps, | 
					
						
						|  | ch_finetune, | 
					
						
						|  | ], | 
					
						
						|  | outputs=[ | 
					
						
						|  | batch_size_per_gpu, | 
					
						
						|  | max_samples, | 
					
						
						|  | num_warmup_updates, | 
					
						
						|  | save_per_updates, | 
					
						
						|  | last_per_steps, | 
					
						
						|  | lb_samples, | 
					
						
						|  | learning_rate, | 
					
						
						|  | ], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("reduse checkpoint"): | 
					
						
						|  | txt_path_checkpoint = gr.Text(label="path checkpoint :") | 
					
						
						|  | txt_path_checkpoint_small = gr.Text(label="path output :") | 
					
						
						|  | txt_info_reduse = gr.Text(label="info", value="") | 
					
						
						|  | reduse_button = gr.Button("reduse") | 
					
						
						|  | reduse_button.click( | 
					
						
						|  | fn=extract_and_save_ema_model, | 
					
						
						|  | inputs=[txt_path_checkpoint, txt_path_checkpoint_small], | 
					
						
						|  | outputs=[txt_info_reduse], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("vocab check experiment"): | 
					
						
						|  | check_button = gr.Button("check vocab") | 
					
						
						|  | txt_info_check = gr.Text(label="info", value="") | 
					
						
						|  | check_button.click(fn=vocab_check, inputs=[project_name], outputs=[txt_info_check]) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("test model"): | 
					
						
						|  | exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS") | 
					
						
						|  | nfe_step = gr.Number(label="n_step", value=32) | 
					
						
						|  | file_checkpoint_pt = gr.Textbox(label="Checkpoint", value="") | 
					
						
						|  |  | 
					
						
						|  | random_sample_infer = gr.Button("random sample") | 
					
						
						|  |  | 
					
						
						|  | ref_text = gr.Textbox(label="ref text") | 
					
						
						|  | ref_audio = gr.Audio(label="audio ref", type="filepath") | 
					
						
						|  | gen_text = gr.Textbox(label="gen text") | 
					
						
						|  | random_sample_infer.click( | 
					
						
						|  | fn=get_random_sample_infer, inputs=[project_name], outputs=[ref_text, gen_text, ref_audio] | 
					
						
						|  | ) | 
					
						
						|  | check_button_infer = gr.Button("infer") | 
					
						
						|  | gen_audio = gr.Audio(label="audio gen", type="filepath") | 
					
						
						|  |  | 
					
						
						|  | check_button_infer.click( | 
					
						
						|  | fn=infer, | 
					
						
						|  | inputs=[file_checkpoint_pt, exp_name, ref_text, ref_audio, gen_text, nfe_step], | 
					
						
						|  | outputs=[gen_audio], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @click.command() | 
					
						
						|  | @click.option("--port", "-p", default=None, type=int, help="Port to run the app on") | 
					
						
						|  | @click.option("--host", "-H", default=None, help="Host to run the app on") | 
					
						
						|  | @click.option( | 
					
						
						|  | "--share", | 
					
						
						|  | "-s", | 
					
						
						|  | default=False, | 
					
						
						|  | is_flag=True, | 
					
						
						|  | help="Share the app via Gradio share link", | 
					
						
						|  | ) | 
					
						
						|  | @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") | 
					
						
						|  | def main(port, host, share, api): | 
					
						
						|  | global app | 
					
						
						|  | print("Starting app...") | 
					
						
						|  | app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |