Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
# =============
|
| 3 |
+
# This is a complete app.py file for an automatic speech recognition app using the openai/whisper-large-v3-turbo model.
|
| 4 |
+
# The app is built using Gradio and Hugging Face Transformers, and it runs on the CPU to avoid video memory usage.
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
# Set device to CPU
|
| 11 |
+
device = "cpu"
|
| 12 |
+
torch_dtype = torch.float32
|
| 13 |
+
|
| 14 |
+
# Load the model and processor
|
| 15 |
+
model_id = "openai/whisper-large-v3-turbo"
|
| 16 |
+
|
| 17 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 18 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 19 |
+
)
|
| 20 |
+
model.to(device)
|
| 21 |
+
|
| 22 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 23 |
+
|
| 24 |
+
# Create the ASR pipeline
|
| 25 |
+
pipe = pipeline(
|
| 26 |
+
"automatic-speech-recognition",
|
| 27 |
+
model=model,
|
| 28 |
+
tokenizer=processor.tokenizer,
|
| 29 |
+
feature_extractor=processor.feature_extractor,
|
| 30 |
+
torch_dtype=torch_dtype,
|
| 31 |
+
device=device,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def transcribe_audio(audio_file):
|
| 35 |
+
"""
|
| 36 |
+
Transcribe the given audio file using the Whisper model.
|
| 37 |
+
|
| 38 |
+
Parameters:
|
| 39 |
+
audio_file (str): Path to the audio file.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
str: Transcribed text.
|
| 43 |
+
"""
|
| 44 |
+
result = pipe(audio_file)
|
| 45 |
+
return result["text"]
|
| 46 |
+
|
| 47 |
+
# Define the Gradio interface
|
| 48 |
+
iface = gr.Interface(
|
| 49 |
+
fn=transcribe_audio,
|
| 50 |
+
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
| 51 |
+
outputs="text",
|
| 52 |
+
title="Whisper ASR Demo",
|
| 53 |
+
description="Upload an audio file and get the transcribed text using the openai/whisper-large-v3-turbo model.",
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Launch the Gradio app
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
iface.launch()
|