Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,57 +8,54 @@ import matplotlib.pyplot as plt
|
|
| 8 |
import librosa
|
| 9 |
import librosa.display
|
| 10 |
import os
|
| 11 |
-
import moviepy.
|
| 12 |
|
| 13 |
# Function to generate frequency visualization frames from audio
|
| 14 |
-
def generate_frequency_visualization(audio_path):
|
| 15 |
try:
|
| 16 |
# Load the audio file
|
| 17 |
y, sr = librosa.load(audio_path, sr=None)
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
if sr == 0 or len(y) == 0:
|
| 21 |
raise ValueError("Invalid audio file: sampling rate or audio data is zero.")
|
| 22 |
|
| 23 |
# Perform Short-Time Fourier Transform (STFT)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Create a directory to save the frames
|
| 29 |
os.makedirs('frames', exist_ok=True)
|
| 30 |
|
| 31 |
# Generate and save each frame
|
| 32 |
-
for i in
|
| 33 |
plt.figure(figsize=(10, 6))
|
| 34 |
-
|
|
|
|
| 35 |
plt.axis('off')
|
| 36 |
plt.savefig(f'frames/frame_{i:04d}.png', bbox_inches='tight', pad_inches=0)
|
| 37 |
plt.close()
|
| 38 |
|
| 39 |
-
print(f"Generated {
|
| 40 |
-
return 'frames'
|
| 41 |
except Exception as e:
|
| 42 |
print(f"Error generating frequency visualization: {e}")
|
| 43 |
-
|
| 44 |
-
generate_default_visualization()
|
| 45 |
-
return 'frames'
|
| 46 |
-
|
| 47 |
-
# Function to generate a default visualization
|
| 48 |
-
def generate_default_visualization():
|
| 49 |
-
# Create a directory to save the frames
|
| 50 |
-
os.makedirs('frames', exist_ok=True)
|
| 51 |
-
|
| 52 |
-
# Generate and save default frames
|
| 53 |
-
for i in range(10): # Generate 10 default frames
|
| 54 |
-
plt.figure(figsize=(10, 6))
|
| 55 |
-
plt.plot(np.sin(np.linspace(0, 10, 100)) * (i + 1))
|
| 56 |
-
plt.axis('off')
|
| 57 |
-
plt.savefig(f'frames/frame_{i:04d}.png', bbox_inches='tight', pad_inches=0)
|
| 58 |
-
plt.close()
|
| 59 |
|
| 60 |
# Function to create a video from the generated frames
|
| 61 |
-
def create_video_from_frames(frames_directory):
|
| 62 |
try:
|
| 63 |
# Get the list of frame files
|
| 64 |
frame_files = [os.path.join(frames_directory, f) for f in os.listdir(frames_directory) if f.endswith('.png')]
|
|
@@ -68,9 +65,13 @@ def create_video_from_frames(frames_directory):
|
|
| 68 |
raise ValueError("No frames found to create the video.")
|
| 69 |
|
| 70 |
# Create a video from the frames
|
| 71 |
-
clip =
|
| 72 |
video_path = 'output_video.mp4'
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
print(f"Video created with {len(frame_files)} frames.")
|
| 76 |
return video_path
|
|
@@ -81,9 +82,14 @@ def create_video_from_frames(frames_directory):
|
|
| 81 |
# Gradio interface function
|
| 82 |
def process_audio(audio):
|
| 83 |
audio_path = audio
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Create the Gradio interface with explanations and recommendations
|
| 89 |
iface = gr.Interface(
|
|
@@ -94,7 +100,7 @@ iface = gr.Interface(
|
|
| 94 |
description="Upload an audio file to generate a video with frequency visualization. "
|
| 95 |
"Supported file types: WAV, MP3, FLAC. "
|
| 96 |
"Recommended file duration: 10 seconds to 5 minutes. "
|
| 97 |
-
"
|
| 98 |
)
|
| 99 |
|
| 100 |
# Launch the Gradio interface
|
|
|
|
| 8 |
import librosa
|
| 9 |
import librosa.display
|
| 10 |
import os
|
| 11 |
+
import moviepy.editor as mp
|
| 12 |
|
| 13 |
# Function to generate frequency visualization frames from audio
|
| 14 |
+
def generate_frequency_visualization(audio_path, fps, num_bars):
|
| 15 |
try:
|
| 16 |
# Load the audio file
|
| 17 |
y, sr = librosa.load(audio_path, sr=None)
|
| 18 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
| 19 |
+
print(f"Loaded audio file with sampling rate: {sr}, and duration: {duration} seconds.")
|
| 20 |
|
| 21 |
if sr == 0 or len(y) == 0:
|
| 22 |
raise ValueError("Invalid audio file: sampling rate or audio data is zero.")
|
| 23 |
|
| 24 |
# Perform Short-Time Fourier Transform (STFT)
|
| 25 |
+
hop_length = int(sr / fps) # Hop length to match the desired fps
|
| 26 |
+
S = np.abs(librosa.stft(y, n_fft=2048, hop_length=hop_length))
|
| 27 |
+
frequencies = librosa.fft_frequencies(sr=sr)
|
| 28 |
+
|
| 29 |
+
# Create frequency bins for the bars
|
| 30 |
+
bins = np.linspace(0, len(frequencies), num_bars + 1, dtype=int)
|
| 31 |
+
bar_heights = []
|
| 32 |
+
|
| 33 |
+
# Aggregate power for each bar
|
| 34 |
+
for i in range(len(S[0])):
|
| 35 |
+
frame = S[:, i]
|
| 36 |
+
bar_frame = [np.mean(frame[bins[j]:bins[j+1]]) for j in range(num_bars)]
|
| 37 |
+
bar_heights.append(bar_frame)
|
| 38 |
|
| 39 |
# Create a directory to save the frames
|
| 40 |
os.makedirs('frames', exist_ok=True)
|
| 41 |
|
| 42 |
# Generate and save each frame
|
| 43 |
+
for i, heights in enumerate(bar_heights):
|
| 44 |
plt.figure(figsize=(10, 6))
|
| 45 |
+
plt.bar(range(num_bars), heights, color=plt.cm.viridis(np.linspace(0, 1, num_bars)))
|
| 46 |
+
plt.ylim(0, np.max(S))
|
| 47 |
plt.axis('off')
|
| 48 |
plt.savefig(f'frames/frame_{i:04d}.png', bbox_inches='tight', pad_inches=0)
|
| 49 |
plt.close()
|
| 50 |
|
| 51 |
+
print(f"Generated {len(bar_heights)} frames for visualization.")
|
| 52 |
+
return 'frames', duration
|
| 53 |
except Exception as e:
|
| 54 |
print(f"Error generating frequency visualization: {e}")
|
| 55 |
+
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
# Function to create a video from the generated frames
|
| 58 |
+
def create_video_from_frames(frames_directory, audio_path, fps, duration):
|
| 59 |
try:
|
| 60 |
# Get the list of frame files
|
| 61 |
frame_files = [os.path.join(frames_directory, f) for f in os.listdir(frames_directory) if f.endswith('.png')]
|
|
|
|
| 65 |
raise ValueError("No frames found to create the video.")
|
| 66 |
|
| 67 |
# Create a video from the frames
|
| 68 |
+
clip = mp.ImageSequenceClip(frame_files, fps=fps)
|
| 69 |
video_path = 'output_video.mp4'
|
| 70 |
+
|
| 71 |
+
# Add the audio to the video
|
| 72 |
+
audio_clip = mp.AudioFileClip(audio_path)
|
| 73 |
+
final_clip = clip.set_audio(audio_clip.subclip(0, duration))
|
| 74 |
+
final_clip.write_videofile(video_path, codec='libx264', audio_codec='aac')
|
| 75 |
|
| 76 |
print(f"Video created with {len(frame_files)} frames.")
|
| 77 |
return video_path
|
|
|
|
| 82 |
# Gradio interface function
|
| 83 |
def process_audio(audio):
|
| 84 |
audio_path = audio
|
| 85 |
+
fps = 60
|
| 86 |
+
num_bars = 12
|
| 87 |
+
frames_directory, duration = generate_frequency_visualization(audio_path, fps, num_bars)
|
| 88 |
+
if frames_directory:
|
| 89 |
+
video_path = create_video_from_frames(frames_directory, audio_path, fps, duration)
|
| 90 |
+
return video_path
|
| 91 |
+
else:
|
| 92 |
+
return None
|
| 93 |
|
| 94 |
# Create the Gradio interface with explanations and recommendations
|
| 95 |
iface = gr.Interface(
|
|
|
|
| 100 |
description="Upload an audio file to generate a video with frequency visualization. "
|
| 101 |
"Supported file types: WAV, MP3, FLAC. "
|
| 102 |
"Recommended file duration: 10 seconds to 5 minutes. "
|
| 103 |
+
"The visualization will consist of 12 bars representing frequency ranges.",
|
| 104 |
)
|
| 105 |
|
| 106 |
# Launch the Gradio interface
|