import gradio as gr def render_eval_info(): text = r""" The Iqra’Eval challenge provides a shared, transparent platform to benchmark phoneme‐prediction systems on our open testset (“IqraEval/open_testset”). **Submission Details** – Submit a UTF‑8 CSV named **teamName_submission.csv** with exactly two columns: 1. **ID**: utterance identifier (e.g. “0000_0001”) 2. **Labels**: your predicted phoneme sequence (space‑separated) ```csv ID,Labels 0000_0001,i n n a m a a y a … 0000_0002,m a a n a n s a … ``` **Evaluation Criteria** – Leaderboard ranking is based on phoneme‑level **F1‑score**, computed via a two‑stage (detection + diagnostic) hierarchy: 1. **Detection (error vs. correct)** - **TR (True Rejects)**: mispronounced phonemes correctly flagged - **FA (False Accepts)**: mispronunciations missed - **FR (False Rejects)**: correct phonemes wrongly flagged - **TA (True Accepts)**: correct phonemes correctly passed **Metrics:** - **Precision** = `TR / (TR + FR)` - **Recall** = `TR / (TR + FA)` - **F1** = `2 · Precision · Recall / (Precision + Recall)` 2. **Diagnostic (substitution/deletion/insertion errors)** See the **Metrics** tab for breakdown into: - **DER**: Deletion Error Rate - **IER**: Insertion Error Rate - **SER**: Substitution Error Rate – Once we receive your file (email: **iqraeval-submissions@googlegroups.com**), your submission is auto‑evaluated and placed on the leaderboard. """ return gr.Markdown(text, latex_delimiters=[{ "left": "$", "right": "$", "display": True }])