Spaces:
Running
Running
import gradio as gr | |
def render_eval_info(): | |
text = r""" | |
The Iqra’Eval challenge provides a shared, transparent platform to benchmark phoneme‐prediction systems on our open testset (“IqraEval/open_testset”). | |
**Submission Details** | |
– Submit a UTF‑8 CSV named **teamName_submission.csv** with exactly two columns: | |
1. **ID**: utterance identifier (e.g. “0000_0001”) | |
2. **Labels**: your predicted phoneme sequence (space‑separated) | |
```csv | |
ID,Labels | |
0000_0001,i n n a m a a y a … | |
0000_0002,m a a n a n s a … | |
``` | |
**Evaluation Criteria** | |
– Leaderboard ranking is based on phoneme‑level **F1‑score**, computed via a two‑stage (detection + diagnostic) hierarchy: | |
1. **Detection (error vs. correct)** | |
- **TR (True Rejects)**: mispronounced phonemes correctly flagged | |
- **FA (False Accepts)**: mispronunciations missed | |
- **FR (False Rejects)**: correct phonemes wrongly flagged | |
- **TA (True Accepts)**: correct phonemes correctly passed | |
**Metrics:** | |
- **Precision** = `TR / (TR + FR)` | |
- **Recall** = `TR / (TR + FA)` | |
- **F1** = `2 · Precision · Recall / (Precision + Recall)` | |
2. **Diagnostic (substitution/deletion/insertion errors)** | |
See the **Metrics** tab for breakdown into: | |
- **DER**: Deletion Error Rate | |
- **IER**: Insertion Error Rate | |
- **SER**: Substitution Error Rate | |
– Once we receive your file (email: **[email protected]**), your submission is auto‑evaluated and placed on the leaderboard. | |
""" | |
return gr.Markdown(text, latex_delimiters=[{ "left": "$", "right": "$", "display": True }]) | |