Spaces:
Runtime error
Runtime error
| DEPLOY_TEXT = f""" | |
| # 🚀 Deployment Tips | |
| A collection of powerful models is valuable, but ultimately, you need to be able to use them effectively. | |
| This tab is dedicated to providing guidance and code snippets for performing inference with leaderboard models on Intel platforms. | |
| Below is a table of open-source software options for inference, along with the supported Intel hardware platforms. | |
| A 🚀 indicates that inference with the associated software package is supported on the hardware. We hope this information | |
| helps you choose the best option for your specific use case. Happy building! | |
| <div style="display: flex; justify-content: center;"> | |
| <table border="1"> | |
| <tr> | |
| <th>Inference Software</th> | |
| <th>Gaudi</th> | |
| <th>Xeon</th> | |
| <th>GPU Max</th> | |
| <th>Arc GPU</th> | |
| <th>Core Ultra</th> | |
| </tr> | |
| </tr> | |
| <td>PyTorch</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| </tr> | |
| <tr> | |
| <td>OpenVINO</td> | |
| <td></td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| </tr> | |
| <tr> | |
| <td>Hugging Face</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| <td>🚀</td> | |
| </tr> | |
| </table> | |
| </div> | |
| <hr> | |
| # Intel® Gaudi® Accelerators | |
| Gaudi is Intel's most capable deep learning chip. You can learn about Gaudi [here](https://habana.ai/products/gaudi2/). | |
| 👍[Optimum Habana GitHub](https://github.com/huggingface/optimum-habana) | |
| The "run_generation.py" script below can be found [here on GitHub](https://github.com/huggingface/optimum-habana/tree/main/examples/text-generation) | |
| ```bash | |
| python run_generation.py \ | |
| --model_name_or_path meta-llama/Llama-2-7b-hf \ | |
| --use_hpu_graphs \ | |
| --use_kv_cache \ | |
| --max_new_tokens 100 \ | |
| --do_sample \ | |
| --batch_size 2 \ | |
| --prompt "Hello world" "How are you?" | |
| ``` | |
| <hr> | |
| # Intel® Xeon® CPUs | |
| ### Optimum Intel and Intel Extension for PyTorch (no quantization) | |
| 🤗 Optimum Intel is the interface between the 🤗 Transformers and Diffusers libraries and the different tools and libraries provided by Intel to accelerate end-to-end pipelines on Intel architectures. | |
| 👍 [Optimum Intel GitHub](https://github.com/huggingface/optimum-intel) | |
| Requires installing/updating optimum `pip install --upgrade-strategy eager optimum[ipex]` | |
| ```python | |
| from optimum.intel import IPEXModelForCausalLM | |
| from transformers import AutoTokenizer, pipeline | |
| model = IPEXModelForCausalLM.from_pretrained(model_id) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| results = pipe("A fisherman at sea...") | |
| ``` | |
| ### Intel® Extension for PyTorch - Mixed Precision (fp32 and bf16) | |
| ```python | |
| import torch | |
| import intel_extension_for_pytorch as ipex | |
| import transformers | |
| model= transformers.AutoModelForCausalLM(model_name_or_path).eval() | |
| dtype = torch.float # or torch.bfloat16 | |
| model = ipex.llm.optimize(model, dtype=dtype) | |
| # generation inference loop | |
| with torch.inference_mode(): | |
| model.generate() | |
| ``` | |
| ### Intel® Extension for Transformers - INT4 Inference (CPU) | |
| ```python | |
| from transformers import AutoTokenizer | |
| from intel_extension_for_transformers.transformers import AutoModelForCausalLM | |
| model_name = "Intel/neural-chat-7b-v3-1" | |
| prompt = "When winter becomes spring, the flowers..." | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| inputs = tokenizer(prompt, return_tensors="pt").input_ids | |
| model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True) | |
| outputs = model.generate(inputs) | |
| ``` | |
| <hr> | |
| # Intel® Max Series GPU | |
| ### INT4 Inference (GPU) with Intel Extension for Transformers and Intel Extension for PyTorch | |
| 👍 [Intel Extension for PyTorch GitHub](https://github.com/intel/intel-extension-for-pytorch) | |
| ```python | |
| import intel_extension_for_pytorch as ipex | |
| from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM | |
| from transformers import AutoTokenizer | |
| device_map = "xpu" | |
| model_name ="Qwen/Qwen-7B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| prompt = "When winter becomes spring, the flowers..." | |
| inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device_map) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, | |
| device_map=device_map, load_in_4bit=True) | |
| model = ipex.optimize_transformers(model, inplace=True, dtype=torch.float16, woq=True, device=device_map) | |
| output = model.generate(inputs) | |
| ``` | |
| <hr> | |
| # Intel® Core Ultra (NPUs and iGPUs) | |
| ### OpenVINO Tooling with Optimum Intel | |
| 👍 [OpenVINO GitHub](https://github.com/openvinotoolkit/openvino) | |
| ```python | |
| from optimum.intel import OVModelForCausalLM | |
| from transformers import AutoTokenizer, pipeline | |
| model_id = "helenai/gpt2-ov" | |
| model = OVModelForCausalLM.from_pretrained(model_id) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| pipe("In the spring, beautiful flowers bloom...") | |
| ``` | |
| ### Intel® NPU Acceleration Library | |
| 👍 [Intel NPU Acceleration Library GitHub](https://github.com/intel/intel-npu-acceleration-library) | |
| ```python | |
| from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM | |
| import intel_npu_acceleration_library | |
| import torch | |
| model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
| model = AutoModelForCausalLM.from_pretrained(model_id, use_cache=True).eval() | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, use_default_system_prompt=True) | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| streamer = TextStreamer(tokenizer, skip_special_tokens=True) | |
| print("Compile model for the NPU") | |
| model = intel_npu_acceleration_library.compile(model, dtype=torch.int8) | |
| query = input("Ask something: ") | |
| prefix = tokenizer(query, return_tensors="pt")["input_ids"] | |
| generation_kwargs = dict( | |
| input_ids=prefix, | |
| streamer=streamer, | |
| do_sample=True, | |
| top_k=50, | |
| top_p=0.9, | |
| max_new_tokens=512, | |
| ) | |
| print("Run inference") | |
| _ = model.generate(**generation_kwargs) | |
| ``` | |
| <hr> | |
| # Intel® Arc GPUs | |
| You can learn more about Arc GPUs [here](https://www.intel.com/content/www/us/en/products/details/discrete-gpus/arc.html). | |
| Code snippets coming soon! | |
| """ |