Spaces:
Running
Running
File size: 13,667 Bytes
3af7433 ae4a477 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 d65aec2 3af7433 ae4a477 3af7433 d65aec2 3af7433 ae4a477 3af7433 d65aec2 3af7433 d65aec2 3af7433 ae4a477 d65aec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
"""
Chat demo for local LLMs using Streamlit.
Run with:
```
streamlit run chat.py --server.address 0.0.0.0
```
"""
import logging
import os
import openai
import regex
import streamlit as st
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def convert_latex_brackets_to_dollars(text):
"""Convert LaTeX bracket notation to dollar notation for Streamlit."""
def replace_display_latex(match):
return f"\n<bdi> $$ {match.group(1).strip()} $$ </bdi>\n"
text = regex.sub(r"(?r)\\\[\s*([^\[\]]+?)\s*\\\]", replace_display_latex, text)
def replace_paren_latex(match):
return f" <bdi> $ {match.group(1).strip()} $ </bdi> "
text = regex.sub(r"(?r)\\\(\s*(.+?)\s*\\\)", replace_paren_latex, text)
return text
# (CSS injection moved below and applied conditionally based on st.session_state.lang)
@st.cache_resource
def openai_configured():
return {
"model": os.getenv("MY_MODEL", "Intel/hebrew-math-tutor-v1"),
"api_base": os.getenv("AWS_URL", "http://localhost:8111/v1"),
"api_key": os.getenv("MY_KEY"),
}
config = openai_configured()
@st.cache_resource
def get_client():
return openai.OpenAI(api_key=config["api_key"], base_url=config["api_base"])
client = get_client()
# Language toggle state: 'he' (Hebrew) or 'en' (English)
if "lang" not in st.session_state:
st.session_state.lang = "he"
# Localized UI strings
labels = {
"he": {
"title": "מתמטיבוט 🧮",
"intro": """
ברוכים הבאים לדמו! 💡 כאן תוכלו להתרשם **ממודל השפה החדש** שלנו; מודל בגודל 4 מיליארד פרמטרים שאומן לענות על שאלות מתמטיות בעברית, על המחשב שלכם, ללא חיבור לרשת.
קישור למודל, פרטים נוספים, יצירת קשר ותנאי שימוש:
https://huggingface.co/Intel/hebrew-math-tutor-v1
-----
""",
"select_label": "בחרו שאלה מוכנה או צרו שאלה חדשה:",
"new_question": "שאלה חדשה...",
"text_label": "שאלה:",
"placeholder": "הזינו את השאלה כאן...",
"send": "שלח",
"reset": "שיחה חדשה",
"toggle_to": "English 🇬🇧",
"predefined": [
"שאלה חדשה...",
" מהו סכום הסדרה הבאה: 1 + 1/2 + 1/4 + 1/8 + ...",
"פתח את הביטוי: (a-b)^4",
"פתרו את המשוואה הבאה: sin(2x) = 0.5",
],
},
"en": {
"title": "MathBot 🧮",
"intro": """
Welcome to the demo! 💡 Here you can try our **new language model** — a 4-billion-parameter model trained to answer math questions in Hebrew while maintaining its English capabilities. It runs locally on your machine without requiring an internet connection.
For the model page and more details see:
https://huggingface.co/Intel/hebrew-math-tutor-v1
-----
""",
"select_label": "Choose a prepared question or create a new one:",
"new_question": "New question...",
"text_label": "Question:",
"placeholder": "Type your question here...",
"send": "Send",
"reset": "New Conversation",
"toggle_to": "עברית 🇮🇱",
"predefined": [
"New question...",
"What is the sum of the series: 1 + 1/2 + 1/4 + 1/8 + ...",
"Expand the expression: (a-b)^4",
"Solve the equation: sin(2x) = 0.5",
],
},
}
L = labels[st.session_state.lang]
# Inject language-specific CSS so alignment follows the current UI language
if st.session_state.lang == "he":
st.markdown(
"""
<style>
/* RTL: apply to Streamlit content */
.stText, .stTextArea textarea, .stTextArea label, .stSelectbox select, .stSelectbox label, .stSelectbox div,
select, option, [data-testid="stSelectbox"] select, [data-testid="stSelectbox"] option, .stSelectbox > div, .stSelectbox > div > div,
.stSelectbox [role="listbox"], .stSelectbox [role="option"], div[role="listbox"], div[role="option"] {
direction: rtl !important;
text-align: right !important;
}
.stChatMessage { direction: rtl !important; text-align: right !important; }
h1, .stTitle, [data-testid="stHeader"] h1 { direction: rtl !important; text-align: right !important; }
.stMarkdown p:not(:has(.MathJax)):not(:has(mjx-container)):not(:has(.katex)) { direction: rtl !important; text-align: right !important; }
.stMarkdown code, .stMarkdown pre { direction: ltr !important; text-align: left !important; }
.stButton button { direction: rtl !important; }
</style>
""",
unsafe_allow_html=True,
)
else:
# Ensure default LTR for English mode (override any residual RTL rules)
st.markdown(
"""
<style>
.stText, .stTextArea textarea, .stTextArea label, .stSelectbox select, .stSelectbox label, .stSelectbox div,
select, option, [data-testid="stSelectbox"] select, [data-testid="stSelectbox"] option, .stSelectbox > div, .stSelectbox > div > div,
.stSelectbox [role="listbox"], .stSelectbox [role="option"], div[role="listbox"], div[role="option"] {
direction: ltr !important;
text-align: left !important;
}
.stChatMessage { direction: ltr !important; text-align: left !important; }
h1, .stTitle, [data-testid="stHeader"] h1 { direction: ltr !important; text-align: left !important; }
.stMarkdown code, .stMarkdown pre { direction: ltr !important; text-align: left !important; }
.stButton button { direction: ltr !important; }
</style>
""",
unsafe_allow_html=True,
)
# Localized strings/templates for thinking/details and final answer
if st.session_state.lang == "he":
_dir = "rtl"
_align = "right"
_summary_text = "לחץ כדי לראות את תהליך החשיבה"
_thinking_prefix = "🤔 חושב"
_thinking_done = "🤔 *תהליך החשיבה הושלם, מכין תשובה...*"
_final_label = "📝 תשובה סופית:"
else:
_dir = "ltr"
_align = "left"
_summary_text = "Click to view the thinking process"
_thinking_prefix = "🤔 Thinking"
_thinking_done = "🤔 *Thinking complete, preparing answer...*"
_final_label = "📝 Final answer:"
# Helper HTML template for the collapsible thinking/details block
_details_template = (
'<details dir="{dir}" style="text-align: {align};">'
"<summary>🤔 <em>{summary}</em></summary>"
'<div style="white-space: pre-wrap; margin: 10px 0; direction: {dir}; text-align: {align};">{content}</div>'
"</details>"
)
st.title(L["title"])
st.markdown(L["intro"])
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Predefined options
predefined_options = L["predefined"]
# Dropdown for predefined options
selected_option = st.selectbox(L["select_label"], predefined_options)
# Text area for input
if selected_option == L["new_question"]:
user_input = st.text_area(
L["text_label"], height=100, key="user_input", placeholder=L["placeholder"]
)
else:
user_input = st.text_area(L["text_label"], height=100, key="user_input", value=selected_option)
# Buttons layout: Reset | Language Toggle | Send
col_left, col_mid, col_right = st.columns([4, 2, 4])
with col_left:
if st.button(L["reset"], type="secondary", use_container_width=True):
st.session_state.chat_history = []
st.rerun()
with col_mid:
# Button shows the language to switch TO (e.g. 'English' when current is Hebrew)
if st.button(L["toggle_to"], use_container_width=True):
st.session_state.lang = "en" if st.session_state.lang == "he" else "he"
st.rerun()
with col_right:
# Guard against None from text_area and ensure non-empty trimmed input
send_clicked = st.button(L["send"], type="primary", use_container_width=True) and (
user_input and user_input.strip()
)
if send_clicked:
st.session_state.chat_history.append(("user", user_input))
# Create a placeholder for streaming output
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# System prompt - adapt to UI language; do not force Hebrew when UI is English
if st.session_state.lang == "he":
system_prompt = """\
You are a helpful AI assistant specialized in mathematics and problem-solving who can answer math questions with the correct answer.
Answer shortly, not more than 500 tokens, but outline the process step by step.
Answer ONLY in Hebrew!
"""
else:
system_prompt = """\
You are a helpful AI assistant specialized in mathematics and problem-solving who can answer math questions with the correct answer.
Answer shortly, not more than 500 tokens, but outline the process step by step.
"""
# Create messages in proper chat format
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input},
]
# Build a single string prompt for OpenAI-compatible chat API
# Keep the special thinking tokens (<think>...</think>) if the remote model supports them
prompt_messages = messages
# Stream from OpenAI-compatible API (vllm remote exposing openai-compatible endpoint)
# Use the chat completions streaming interface
in_thinking = True
thinking_content = "<think>"
final_answer = ""
try:
# openai.ChatCompletion.create with stream=True yields chunks with 'choices'
stream = client.chat.completions.create(
messages=prompt_messages,
model=config["model"],
temperature=0.6,
max_tokens=2000,
top_p=0.95,
stream=True,
extra_body={"top_k": 20},
)
for chunk in stream:
# Each chunk is a dict; text delta at chunk['choices'][0]['delta'] for newer APIs
delta = ""
try:
# compatible with OpenAI response structure
delta = chunk.choices[0].delta.content
except Exception:
# fallback for older/other shapes; use getattr to avoid dict-specific calls
delta = getattr(chunk, "text", None) or "HI "
if not delta:
continue
full_response += delta
# Handle thinking markers
if "<think>" in delta:
in_thinking = True
if in_thinking:
thinking_content += delta
if "</think>" in delta:
in_thinking = False
thinking_text = (
thinking_content.replace("<think>", "").replace("</think>", "").strip()
)
display_content = _details_template.format(
dir=_dir, align=_align, summary=_summary_text, content=thinking_text
)
message_placeholder.markdown(display_content + "▌", unsafe_allow_html=True)
else:
dots = "." * ((len(thinking_content) // 10) % 6)
# thinking indicator
thinking_indicator = f"""
<div dir="{_dir}" style="padding: 10px; background-color: #f0f2f6; border-radius: 10px; border-right: 4px solid #1f77b4; text-align: {_align};">
<p style="margin: 0; color: #1f77b4; font-style: italic;">
{_thinking_prefix}{dots}
</p>
</div>
"""
message_placeholder.markdown(thinking_indicator, unsafe_allow_html=True)
else:
# Final answer streaming
final_answer += delta
converted_answer = convert_latex_brackets_to_dollars(final_answer)
message_placeholder.markdown(
f"{_thinking_done}\n\n**{_final_label}**\n\n" + converted_answer + "▌",
unsafe_allow_html=True,
)
except Exception as e:
# Show an error to the user
message_placeholder.markdown(f"**Error contacting remote model:** {e}")
# Final rendering: if there was thinking content include it
if thinking_content and "</think>" in thinking_content:
thinking_text = thinking_content.replace("<think>", "").replace("</think>", "").strip()
message_placeholder.empty()
with message_placeholder.container():
thinking_html = _details_template.format(
dir=_dir, align=_align, summary=_summary_text, content=thinking_text
)
st.markdown(thinking_html, unsafe_allow_html=True)
st.markdown(
f'<div dir="{_dir}" style="text-align: {_align}; margin: 10px 0;"><strong>{_final_label}</strong></div>',
unsafe_allow_html=True,
)
converted_answer = convert_latex_brackets_to_dollars(final_answer or full_response)
st.markdown(converted_answer, unsafe_allow_html=True)
else:
converted_response = convert_latex_brackets_to_dollars(final_answer or full_response)
message_placeholder.markdown(converted_response, unsafe_allow_html=True)
st.session_state.chat_history.append(("assistant", final_answer or full_response))
|