Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,159 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1024
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
prompt,
|
| 27 |
-
|
| 28 |
seed,
|
| 29 |
randomize_seed,
|
| 30 |
width,
|
| 31 |
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
| 34 |
progress=gr.Progress(track_tqdm=True),
|
| 35 |
):
|
| 36 |
if randomize_seed:
|
| 37 |
seed = random.randint(0, MAX_SEED)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
prompt=prompt,
|
| 43 |
-
|
| 44 |
-
guidance_scale=guidance_scale,
|
| 45 |
-
num_inference_steps=num_inference_steps,
|
| 46 |
width=width,
|
| 47 |
height=height,
|
| 48 |
-
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
return
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
examples = [
|
| 55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
-
"An astronaut riding a green horse",
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
-
]
|
| 59 |
|
|
|
|
| 60 |
css = """
|
| 61 |
#col-container {
|
| 62 |
margin: 0 auto;
|
| 63 |
-
max-width:
|
| 64 |
}
|
| 65 |
"""
|
| 66 |
|
|
|
|
| 67 |
with gr.Blocks(css=css) as demo:
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown("
|
| 70 |
-
|
| 71 |
with gr.Row():
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
-
negative_prompt = gr.Text(
|
| 86 |
-
label="Negative prompt",
|
| 87 |
-
max_lines=1,
|
| 88 |
-
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
seed = gr.Slider(
|
| 93 |
label="Seed",
|
| 94 |
minimum=0,
|
| 95 |
maximum=MAX_SEED,
|
| 96 |
step=1,
|
| 97 |
-
value=
|
| 98 |
)
|
| 99 |
-
|
| 100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
with gr.Row():
|
| 103 |
width = gr.Slider(
|
| 104 |
label="Width",
|
| 105 |
minimum=256,
|
| 106 |
maximum=MAX_IMAGE_SIZE,
|
| 107 |
step=32,
|
| 108 |
-
value=
|
| 109 |
)
|
| 110 |
-
|
| 111 |
height = gr.Slider(
|
| 112 |
label="Height",
|
| 113 |
minimum=256,
|
| 114 |
maximum=MAX_IMAGE_SIZE,
|
| 115 |
step=32,
|
| 116 |
-
value=
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
with gr.Row():
|
| 120 |
-
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance scale",
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=infer,
|
| 140 |
inputs=[
|
|
|
|
| 141 |
prompt,
|
| 142 |
-
|
| 143 |
seed,
|
| 144 |
randomize_seed,
|
| 145 |
width,
|
| 146 |
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
],
|
| 150 |
outputs=[result, seed],
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import os
|
| 7 |
+
from pipeline_flux_ipa import FluxPipeline
|
| 8 |
+
from transformer_flux import FluxTransformer2DModel
|
| 9 |
+
from attention_processor import IPAFluxAttnProcessor2_0
|
| 10 |
+
from transformers import AutoProcessor, SiglipVisionModel
|
| 11 |
+
from infer_flux_ipa_siglip import MLPProjModel, IPAdapter
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
import spaces
|
| 14 |
+
|
| 15 |
+
# Constants
|
|
|
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
MAX_IMAGE_SIZE = 1024
|
| 18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
image_encoder_path = "google/siglip-so400m-patch14-384"
|
| 21 |
+
ipadapter_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-IP-Adapter", filename="ip-adapter.bin")
|
| 22 |
+
|
| 23 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
| 24 |
+
"black-forest-labs/FLUX.1-dev",
|
| 25 |
+
subfolder="transformer",
|
| 26 |
+
torch_dtype=torch.bfloat16
|
| 27 |
+
)
|
| 28 |
+
pipe = FluxPipeline.from_pretrained(
|
| 29 |
+
"black-forest-labs/FLUX.1-dev",
|
| 30 |
+
transformer=transformer,
|
| 31 |
+
torch_dtype=torch.bfloat16
|
| 32 |
+
)
|
| 33 |
+
ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def resize_img(image, max_size=1024):
|
| 37 |
+
width, height = image.size
|
| 38 |
+
scaling_factor = min(max_size / width, max_size / height)
|
| 39 |
+
new_width = int(width * scaling_factor)
|
| 40 |
+
new_height = int(height * scaling_factor)
|
| 41 |
+
return image.resize((new_width, new_height), Image.LANCZOS)
|
| 42 |
+
|
| 43 |
+
@spaces.GPU
|
| 44 |
+
def process_image(
|
| 45 |
+
image,
|
| 46 |
prompt,
|
| 47 |
+
scale,
|
| 48 |
seed,
|
| 49 |
randomize_seed,
|
| 50 |
width,
|
| 51 |
height,
|
|
|
|
|
|
|
| 52 |
progress=gr.Progress(track_tqdm=True),
|
| 53 |
):
|
| 54 |
if randomize_seed:
|
| 55 |
seed = random.randint(0, MAX_SEED)
|
| 56 |
+
|
| 57 |
+
if image is None:
|
| 58 |
+
return None, seed
|
| 59 |
+
|
| 60 |
+
# Convert to PIL Image if needed
|
| 61 |
+
if not isinstance(image, Image.Image):
|
| 62 |
+
image = Image.fromarray(image)
|
| 63 |
+
|
| 64 |
+
# Resize image
|
| 65 |
+
image = resize_img(image)
|
| 66 |
+
|
| 67 |
+
# Generate the image
|
| 68 |
+
result = ip_model.generate(
|
| 69 |
+
pil_image=image,
|
| 70 |
prompt=prompt,
|
| 71 |
+
scale=scale,
|
|
|
|
|
|
|
| 72 |
width=width,
|
| 73 |
height=height,
|
| 74 |
+
seed=seed
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
return result[0], seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# UI CSS
|
| 80 |
css = """
|
| 81 |
#col-container {
|
| 82 |
margin: 0 auto;
|
| 83 |
+
max-width: 960px;
|
| 84 |
}
|
| 85 |
"""
|
| 86 |
|
| 87 |
+
# Create the Gradio interface
|
| 88 |
with gr.Blocks(css=css) as demo:
|
| 89 |
with gr.Column(elem_id="col-container"):
|
| 90 |
+
gr.Markdown("# Image Processing Model")
|
| 91 |
+
|
| 92 |
with gr.Row():
|
| 93 |
+
with gr.Column():
|
| 94 |
+
input_image = gr.Image(
|
| 95 |
+
label="Input Image",
|
| 96 |
+
type="pil"
|
| 97 |
+
)
|
| 98 |
+
prompt = gr.Text(
|
| 99 |
+
label="Prompt",
|
| 100 |
+
max_lines=1,
|
| 101 |
+
placeholder="Enter your prompt",
|
| 102 |
+
)
|
| 103 |
+
run_button = gr.Button("Process", variant="primary")
|
| 104 |
+
|
| 105 |
+
with gr.Column():
|
| 106 |
+
result = gr.Image(label="Result")
|
| 107 |
+
|
| 108 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
seed = gr.Slider(
|
| 110 |
label="Seed",
|
| 111 |
minimum=0,
|
| 112 |
maximum=MAX_SEED,
|
| 113 |
step=1,
|
| 114 |
+
value=42,
|
| 115 |
)
|
| 116 |
+
|
| 117 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 118 |
+
|
| 119 |
with gr.Row():
|
| 120 |
width = gr.Slider(
|
| 121 |
label="Width",
|
| 122 |
minimum=256,
|
| 123 |
maximum=MAX_IMAGE_SIZE,
|
| 124 |
step=32,
|
| 125 |
+
value=960,
|
| 126 |
)
|
| 127 |
+
|
| 128 |
height = gr.Slider(
|
| 129 |
label="Height",
|
| 130 |
minimum=256,
|
| 131 |
maximum=MAX_IMAGE_SIZE,
|
| 132 |
step=32,
|
| 133 |
+
value=1280,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
)
|
| 135 |
+
|
| 136 |
+
scale = gr.Slider(
|
| 137 |
+
label="Scale",
|
| 138 |
+
minimum=0.0,
|
| 139 |
+
maximum=1.0,
|
| 140 |
+
step=0.1,
|
| 141 |
+
value=0.7,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
run_button.click(
|
| 145 |
+
fn=process_image,
|
|
|
|
|
|
|
| 146 |
inputs=[
|
| 147 |
+
input_image,
|
| 148 |
prompt,
|
| 149 |
+
scale,
|
| 150 |
seed,
|
| 151 |
randomize_seed,
|
| 152 |
width,
|
| 153 |
height,
|
|
|
|
|
|
|
| 154 |
],
|
| 155 |
outputs=[result, seed],
|
| 156 |
)
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|
| 159 |
+
demo.launch()
|