Spaces:
Running
on
Zero
Running
on
Zero
ResearcherXman
commited on
Commit
·
43c2435
1
Parent(s):
fc43999
update
Browse files
app.py
CHANGED
|
@@ -24,31 +24,6 @@ from controlnet_aux import OpenposeDetector
|
|
| 24 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 25 |
import gradio as gr
|
| 26 |
|
| 27 |
-
def get_depth_map(image):
|
| 28 |
-
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
| 29 |
-
with torch.no_grad(), torch.autocast("cuda"):
|
| 30 |
-
depth_map = depth_estimator(image).predicted_depth
|
| 31 |
-
|
| 32 |
-
depth_map = torch.nn.functional.interpolate(
|
| 33 |
-
depth_map.unsqueeze(1),
|
| 34 |
-
size=(1024, 1024),
|
| 35 |
-
mode="bicubic",
|
| 36 |
-
align_corners=False,
|
| 37 |
-
)
|
| 38 |
-
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 39 |
-
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 40 |
-
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 41 |
-
image = torch.cat([depth_map] * 3, dim=1)
|
| 42 |
-
|
| 43 |
-
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 44 |
-
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
| 45 |
-
return image
|
| 46 |
-
|
| 47 |
-
def get_canny_image(image, t1=100, t2=200):
|
| 48 |
-
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 49 |
-
edges = cv2.Canny(image, t1, t2)
|
| 50 |
-
return Image.fromarray(edges, "L")
|
| 51 |
-
|
| 52 |
# global variable
|
| 53 |
MAX_SEED = np.iinfo(np.int32).max
|
| 54 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -104,6 +79,31 @@ controlnet_depth = ControlNetModel.from_pretrained(
|
|
| 104 |
controlnet_depth_model, torch_dtype=dtype
|
| 105 |
).to(device)
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
controlnet_map = {
|
| 108 |
"pose": controlnet_pose,
|
| 109 |
"canny": controlnet_canny,
|
|
|
|
| 24 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 25 |
import gradio as gr
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# global variable
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 79 |
controlnet_depth_model, torch_dtype=dtype
|
| 80 |
).to(device)
|
| 81 |
|
| 82 |
+
def get_depth_map(image):
|
| 83 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
| 84 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
| 85 |
+
depth_map = depth_estimator(image).predicted_depth
|
| 86 |
+
|
| 87 |
+
depth_map = torch.nn.functional.interpolate(
|
| 88 |
+
depth_map.unsqueeze(1),
|
| 89 |
+
size=(1024, 1024),
|
| 90 |
+
mode="bicubic",
|
| 91 |
+
align_corners=False,
|
| 92 |
+
)
|
| 93 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 94 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 95 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 96 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
| 97 |
+
|
| 98 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 99 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
| 100 |
+
return image
|
| 101 |
+
|
| 102 |
+
def get_canny_image(image, t1=100, t2=200):
|
| 103 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 104 |
+
edges = cv2.Canny(image, t1, t2)
|
| 105 |
+
return Image.fromarray(edges, "L")
|
| 106 |
+
|
| 107 |
controlnet_map = {
|
| 108 |
"pose": controlnet_pose,
|
| 109 |
"canny": controlnet_canny,
|