File size: 22,666 Bytes
d0b211e
c253a21
93c8832
00e496b
84d76a9
6c92b85
93c8832
 
298147b
 
 
80c9092
93c8832
d0b211e
 
 
 
00e496b
6c92b85
00e496b
d0b211e
00e496b
6c92b85
 
 
00e496b
6c92b85
 
6efba62
6d97d23
6c92b85
00e496b
6c92b85
 
 
 
 
4206b8e
6c92b85
 
 
 
 
00e496b
d0b211e
 
00e496b
2342683
298147b
2342683
66954e0
d0b211e
 
 
93c8832
d0b211e
 
 
 
 
 
 
 
 
 
93c8832
 
 
 
 
 
 
 
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
 
1bb45dc
 
d0b211e
1bb45dc
d0b211e
 
1bb45dc
 
 
d0b211e
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
1bb45dc
d0b211e
 
 
 
1bb45dc
 
d0b211e
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb45dc
 
d0b211e
1bb45dc
d0b211e
 
 
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
 
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb45dc
d0b211e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0e9f
d0b211e
b5f0e9f
d0b211e
 
 
71ea6eb
20b342e
 
71ea6eb
20b342e
 
 
71ea6eb
20b342e
 
 
71ea6eb
93c8832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bfb3bc
93c8832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c92b85
93c8832
 
6c92b85
 
 
00e496b
93c8832
 
66954e0
6c92b85
 
7bfb3bc
6c92b85
 
00e496b
6c92b85
 
 
 
 
 
 
93c8832
298147b
 
93c8832
298147b
 
 
 
66954e0
298147b
 
 
66954e0
298147b
 
 
93c8832
298147b
 
 
93c8832
298147b
93c8832
298147b
 
 
93c8832
6c92b85
 
 
 
93c8832
 
 
 
 
 
00e496b
 
6c92b85
 
 
 
 
 
 
d0b211e
93c8832
 
6c92b85
 
 
 
93c8832
 
 
 
 
 
 
 
6c92b85
93c8832
 
 
903aacb
93c8832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c92b85
7bfb3bc
6c92b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93c8832
6c92b85
 
 
 
 
93c8832
 
 
 
 
6c92b85
 
 
 
 
93c8832
6c92b85
6d97d23
6c92b85
 
93c8832
 
 
6c92b85
93c8832
6c92b85
93c8832
 
6c92b85
93c8832
 
 
 
 
 
 
 
 
6c92b85
 
 
00e496b
66954e0
d0b211e
93c8832
 
 
6c92b85
00e496b
d0b211e
93c8832
66954e0
 
 
7bfb3bc
 
66954e0
93c8832
d0b211e
 
66954e0
340fd24
d0b211e
 
66954e0
 
 
 
00e496b
b5f0e9f
66954e0
7bfb3bc
139466f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
#INFERENCE NLP+EMOTION DETECTION CV+TTS+Memory Management
import spaces

import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
from deepface import DeepFace
import time
from kokoro import KPipeline
from IPython.display import display, Audio
import soundfile as sf
from sentence_transformers import SentenceTransformer
import numpy as np
import chromadb
from langchain_community.vectorstores import Chroma
from collections import defaultdict
from sklearn.cluster import DBSCAN

model_name = "IniNLP247/Kenko-mental-health-llama-3-model"

print("Loading Kenko Mental Health Model...")

tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map="auto"
)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    return_full_text=False,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.9,
    repetition_penalty=1.1,
    pad_token_id=tokenizer.pad_token_id
)

print("Model loaded successfully!")


print("Loading Kokoro TTS Model...")
tts_pipeline = KPipeline(lang_code='b')
print("Kokoro TTS Model loaded successfully!")

print("Initializing Memory Components...")
chroma_client = chromadb.Client()
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")

def embed_function(texts):
    if isinstance(texts, str):
        texts = [texts]
    return embedding_model.encode(texts).tolist()

global_vector_store = Chroma(
    client=chroma_client,
    embedding_function=embed_function
)
print("Memory components initialized!")

current_emotion_state = {
    "dominant": "neutral",
    "confidence": 0.0,
    "all_emotions": {},
    "last_update": None
}


class AdvancedMemorySystem:
    """
    Multi-tier memory system inspired by human memory:
    - Working Memory: Current conversation (high priority)
    - Short-term Memory: Recent session with decay
    - Long-term Memory: Semantic clusters of important themes
    - Emotional Memory: Affective associations and patterns
    """

    def __init__(self, embedding_model, vector_store):
        self.embedding_model = embedding_model
        self.vector_store = vector_store

        
        self.working_memory = []

        
        self.short_term_memory = [] 

        self.semantic_clusters = defaultdict(list)  

        self.emotional_memory = {
            "emotion_transitions": [],  
            "trigger_patterns": defaultdict(list), 
            "coping_effectiveness": {}  
        }
        
        self.conversation_themes = []
        self.user_model = {
            "communication_style": None,
            "recurring_concerns": [],
            "progress_indicators": [],
            "relational_patterns": []
        }

    def calculate_importance(self, text, emotion, user_engagement):
        """Calculate memory importance using multiple factors"""
        importance = 0.5  

        
        high_intensity_emotions = ["fear", "angry", "sad", "surprise"]
        if emotion in high_intensity_emotions:
            importance += 0.3

        
        if len(text.split()) > 30:  
            importance += 0.2

        
        therapeutic_keywords = [
            "trauma", "suicide", "self-harm", "abuse", "panic",
            "breakthrough", "progress", "better", "worse", "relationship"
        ]
        if any(kw in text.lower() for kw in therapeutic_keywords):
            importance += 0.3

        return min(importance, 1.0)

    def add_to_working_memory(self, user_msg, bot_msg, emotion, timestamp):
        """Add to immediate working memory (sliding window)"""
        self.working_memory.append({
            "user": user_msg,
            "bot": bot_msg,
            "emotion": emotion,
            "timestamp": timestamp
        })

        
        if len(self.working_memory) > 5:
            oldest = self.working_memory.pop(0)
            self._consolidate_to_short_term(oldest)

    def _consolidate_to_short_term(self, memory_item):
        """Move from working to short-term memory with importance scoring"""
        text = f"User: {memory_item['user']}\nKenko: {memory_item['bot']}"
        embedding = self.embedding_model.encode(text)

        importance = self.calculate_importance(
            memory_item['user'],
            memory_item['emotion'],
            len(memory_item['user'].split())
        )

        self.short_term_memory.append({
            "text": text,
            "embedding": embedding,
            "importance": importance,
            "timestamp": memory_item['timestamp'],
            "emotion": memory_item['emotion']
        })

        try:
            self.vector_store.add_texts(
                texts=[text],
                metadatas=[{"importance": importance, "timestamp": memory_item['timestamp']}]
            )
        except Exception as e:
            print(f"Vector store error: {e}")

    def apply_temporal_decay(self, current_time):
        """Apply decay to short-term memories over time"""
        decay_rate = 0.01  

        for memory in self.short_term_memory:
            time_elapsed = (current_time - memory['timestamp']) / 60  
            decay_factor = np.exp(-decay_rate * time_elapsed)
            memory['importance'] *= decay_factor

            if memory['importance'] < 0.15:
                self._consolidate_to_long_term(memory)

    def _consolidate_to_long_term(self, memory):
        """Cluster similar memories into semantic long-term memory"""
        if not self.semantic_clusters:
            self.semantic_clusters[0] = [memory]
            self.short_term_memory.remove(memory)
            return

        best_cluster = 0
        best_similarity = -1

        for cluster_id, cluster_memories in self.semantic_clusters.items():
            cluster_embeddings = [m['embedding'] for m in cluster_memories]
            centroid = np.mean(cluster_embeddings, axis=0)

            similarity = np.dot(memory['embedding'], centroid) / (
                np.linalg.norm(memory['embedding']) * np.linalg.norm(centroid)
            )

            if similarity > best_similarity:
                best_similarity = similarity
                best_cluster = cluster_id

        if best_similarity > 0.7:
            self.semantic_clusters[best_cluster].append(memory)
        else:
            new_cluster_id = max(self.semantic_clusters.keys()) + 1
            self.semantic_clusters[new_cluster_id] = [memory]

        if memory in self.short_term_memory:
            self.short_term_memory.remove(memory)

    def track_emotional_transition(self, prev_emotion, current_emotion, context):
        """Track emotional state transitions for pattern recognition"""
        self.emotional_memory["emotion_transitions"].append({
            "from": prev_emotion,
            "to": current_emotion,
            "context": context,
            "timestamp": time.time()
        })

        if prev_emotion != current_emotion:
            self.emotional_memory["trigger_patterns"][current_emotion].append(context)

    def analyze_conversation_themes(self):
        """Use topic modeling on conversation to identify recurring themes"""
        if len(self.short_term_memory) < 3:
            return []

 
        all_text = " ".join([m['text'] for m in self.short_term_memory])

        words = all_text.lower().split()
        word_freq = defaultdict(int)

        stopwords = {"the", "a", "is", "in", "and", "to", "of", "i", "my", "me", "you", "that", "it"}
        for word in words:
            if word not in stopwords and len(word) > 4:
                word_freq[word] += 1


        themes = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:5]
        self.conversation_themes = [theme[0] for theme in themes]

        return self.conversation_themes

    def retrieve_contextual_memory(self, query, current_emotion):
        """Advanced retrieval using multiple memory tiers"""
        context = {
            "working": [],
            "short_term": [],
            "long_term": [],
            "emotional": [],
            "themes": []
        }

        
        context["working"] = self.working_memory[-3:] 

        
        if self.short_term_memory:
            query_embedding = self.embedding_model.encode(query)
            scored_memories = []
            for memory in self.short_term_memory:
            
                similarity = np.dot(query_embedding, memory['embedding']) / (
                    np.linalg.norm(query_embedding) * np.linalg.norm(memory['embedding'])
                )

                final_score = similarity * memory['importance']
                if memory['emotion'] == current_emotion:
                    final_score *= 1.2

                scored_memories.append((final_score, memory))

            scored_memories.sort(reverse=True, key=lambda x: x[0])
            context["short_term"] = [m[1] for m in scored_memories[:3]]

        if self.semantic_clusters:
            query_embedding = self.embedding_model.encode(query)
            best_cluster_id = None
            best_cluster_score = -1

            for cluster_id, cluster_memories in self.semantic_clusters.items():
                cluster_embeddings = [m['embedding'] for m in cluster_memories]
                centroid = np.mean(cluster_embeddings, axis=0)

                similarity = np.dot(query_embedding, centroid) / (
                    np.linalg.norm(query_embedding) * np.linalg.norm(centroid)
                )

                if similarity > best_cluster_score:
                    best_cluster_score = similarity
                    best_cluster_id = cluster_id

            if best_cluster_id is not None and best_cluster_score > 0.6:
                cluster = self.semantic_clusters[best_cluster_id]
                context["long_term"] = cluster[:2] 

        if current_emotion in self.emotional_memory["trigger_patterns"]:
            triggers = self.emotional_memory["trigger_patterns"][current_emotion]
            context["emotional"] = triggers[-2:] 

        context["themes"] = self.analyze_conversation_themes()

        return context

    def update_user_model(self, message, emotion):
        """Build a psychological profile of the user over time"""
        if len(message.split()) > 50:
            style = "detailed"
        elif len(message.split()) < 10:
            style = "concise"
        else:
            style = "moderate"

        self.user_model["communication_style"] = style

        concern_keywords = {
            "anxiety": ["anxious", "worried", "panic", "nervous", "anxiety"],
            "depression": ["sad", "depressed", "hopeless", "empty", "depression"],
            "relationships": ["partner", "relationship", "friend", "family"],
            "work_stress": ["work", "job", "career", "boss", "stress"]
        }

        for concern, keywords in concern_keywords.items():
            if any(kw in message.lower() for kw in keywords):
                if concern not in self.user_model["recurring_concerns"]:
                    self.user_model["recurring_concerns"].append(concern)

    def generate_memory_context_string(self, contextual_memory):
        """Format retrieved memories into prompt context"""
        context_parts = []

        if contextual_memory["working"]:
            recent = "\n".join([
                f"User: {m['user']}\nKenko: {m['bot']}"
                for m in contextual_memory["working"]
            ])
            context_parts.append(f"### Recent Conversation:\n{recent}")

        if contextual_memory["short_term"]:
            important = "\n".join([m['text'] for m in contextual_memory["short_term"]])
            context_parts.append(f"### Important Recent Context:\n{important}")

        if contextual_memory["long_term"]:
            longterm = "\n".join([m['text'] for m in contextual_memory["long_term"]])
            context_parts.append(f"### Related Past Discussions:\n{longterm}")

        if contextual_memory["emotional"]:
            emotional = ", ".join(contextual_memory["emotional"][:3])
            context_parts.append(f"### Emotional Pattern: Previously triggered by: {emotional}")

        if contextual_memory["themes"]:
            themes = ", ".join(contextual_memory["themes"])
            context_parts.append(f"### Session Themes: {themes}")
            
        if self.user_model["recurring_concerns"]:
            concerns = ", ".join(self.user_model["recurring_concerns"])
            context_parts.append(f"### Recurring Concerns: {concerns}")

        return "\n\n".join(context_parts)

    def reset(self):
        """Reset all memory tiers"""
        self.working_memory = []
        self.short_term_memory = []
        self.semantic_clusters = defaultdict(list)
        self.emotional_memory = {
            "emotion_transitions": [],
            "trigger_patterns": defaultdict(list),
            "coping_effectiveness": {}
        }
        self.conversation_themes = []
        self.user_model = {
            "communication_style": None,
            "recurring_concerns": [],
            "progress_indicators": [],
            "relational_patterns": []
        }


print("Initializing Advanced Memory System...")
advanced_memory = AdvancedMemorySystem(embedding_model, global_vector_store)
print("Advanced Memory System initialized!")

previous_emotion = "neutral"

def update_emotion_status():
    if current_emotion_state["last_update"] is None:
        return "*Waiting for emotion data...*"

    elapsed = time.time() - current_emotion_state["last_update"]
    if elapsed > 60:
        return "*Emotion data outdated - please ensure webcam is active*"

    dominant = current_emotion_state["dominant"]
    confidence = current_emotion_state["confidence"]
    return f"**Current Emotion:** {dominant.capitalize()} ({confidence:.1f}% confidence)\n*Last updated: {int(elapsed)}s ago*"

def analyze_emotion(image):
    global current_emotion_state

    try:
        if image is None:
            return {}

        result = DeepFace.analyze(
            img_path=image,
            actions=['emotion'],
            enforce_detection=False,
            detector_backend='opencv'
        )

        if isinstance(result, list):
            emotions = result[0]['emotion']
            dominant = result[0]['dominant_emotion']
        else:
            emotions = result['emotion']
            dominant = result['dominant_emotion']

        current_emotion_state = {
            "dominant": dominant,
            "confidence": emotions[dominant],
            "all_emotions": emotions,
            "last_update": time.time()
        }

        output = {}
        for emotion, score in sorted(emotions.items(), key=lambda x: x[1], reverse=True):
            output[emotion.capitalize()] = score

        return output

    except Exception as e:
        print(f"Emotion analysis error: {str(e)}")
        return {}

def get_emotion_context():
    """Get current emotion as context string for the model"""
    if current_emotion_state["last_update"] is None:
        return ""

    if time.time() - current_emotion_state["last_update"] > 60:
        return ""

    dominant = current_emotion_state["dominant"]
    confidence = current_emotion_state["confidence"]

    emotion_context = f"\n[User's Current Detected Emotion: {dominant} ({confidence:.1f}% confidence)]"
    return emotion_context

def chat_with_kenko(message, history):
    """Chat function for Gradio interface with emotion awareness"""

    conversation = ""
    for user_msg, bot_msg in history:
        conversation += f"User: {user_msg}\nKenko: {bot_msg}\n\n"

    emotion_context = get_emotion_context()


    prompt = f"""### Instruction:
You are Kenko, a compassionate mental health therapist. Provide empathetic, helpful, and professional responses to support the user's mental wellbeing.
{emotion_context}
{conversation}User: {message}
### Response:
"""

    try:
        response = pipe(prompt)[0]['generated_text']
        return response.strip()
    except Exception as e:
        return f"I'm sorry, I'm having trouble processing your message right now. Error: {str(e)}"

def generate_tts(text):
  try:
    text = text[:600]

    generator = tts_pipeline(
      text, voice='af_heart',
      speed=1, split_pattern=r'\n+'
    )

    audio_chunks = []
    for gs, ps, audio in generator:
      audio_chunks.append(audio)

    if not audio_chunks:
      print("TTS generation failed")
      return None

    audio_array = np.concatenate(audio_chunks, axis=0)
    audio_array = audio_array.astype(np.float32)
    sample_rate = 24000

    return (sample_rate, audio_array)

  except Exception as e:
    print(f"TTS generation error: {str(e)}")
    return None

css = """
.gradio-container {
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.emotion-box {
    border: 2px solid #4CAF50;
    border-radius: 10px;
    padding: 10px;
    margin: 10px 0;
}
"""

with gr.Blocks(
    title="Kenko - Mental Health Assistant",
    theme=gr.themes.Soft(),
    css=css
) as demo:

    gr.Markdown("""
    # πŸ’š Kenko - Your Emotion-Aware Mental Health Assistant
    Welcome! I'm Kenko, an AI mental health therapist enhanced with real-time emotion detection.
    Allow webcam access to enable emotion-aware responses that adapt to how you're feeling.
    *Please remember: I'm an AI assistant and cannot replace professional mental health care. In crisis situations, please contact emergency services or a mental health professional.*
    """)

    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                height=500,
                show_label=False,
                container=True,
                bubble_full_width=False,
                avatar_images=("πŸ‘€", "🧠")
            )

            audio_output = gr.Audio(
                label="Kenko's Voice Response",
                autoplay=True,
                show_label=True
            )

            with gr.Row():
                msg = gr.Textbox(
                    placeholder="Share what's on your mind... (press Enter to send)",
                    container=False,
                    scale=7,
                    lines=2,
                    max_lines=4
                )
                send_btn = gr.Button("Send πŸ’¬", scale=1, variant="primary")

            with gr.Row():
                clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", scale=1, variant="secondary")
                examples_btn = gr.Button("πŸ’‘ Example Topics", scale=1, variant="secondary")

        with gr.Column(scale=1):
            gr.Markdown("### πŸ“Έ Emotion Detection")
            gr.Markdown("*Your emotional state helps me provide more personalized support*")

            webcam_input = gr.Image(
                sources=["webcam"],
                type="numpy",
                streaming=True,
                label="Live Webcam Feed"
            )

            emotion_output = gr.Label(
                num_top_classes=7,
                label="Detected Emotions"
            )

            emotion_status = gr.Markdown("*Waiting for emotion data...*")


    with gr.Row(visible=False) as examples_row:
        gr.Examples(
            examples=[
                "I've been feeling really anxious lately and I don't know why.",
                "I'm having trouble sleeping and my mind won't stop racing.",
                "I feel overwhelmed with work and personal responsibilities.",
                "I'm struggling with low self-esteem and negative thoughts.",
                "I'm having difficulty in my relationships.",
                "I feel lonely and isolated.",
                "I'm dealing with grief and loss.",
                "I want to build better coping strategies."
            ],
            inputs=msg,
            label="Try these conversation starters:"
        )

    with gr.Accordion("ℹ️ About Kenko", open=False):
        gr.Markdown("""
        **What I can help with:**
        - Active listening and emotional support (now emotion-aware!)
        - Coping strategies and stress management techniques
        - Guidance on anxiety, depression, and mood concerns
        - Relationship and communication advice
        - Mindfulness and self-care suggestions
        - Building healthy habits and routines
        **Emotion Detection Feature:**
        - Real-time facial emotion analysis
        - Adapts responses based on your current emotional state
        - Updates automatically every 30 seconds
        - Completely optional - works without webcam too
        **Important Notes:**
        - I'm an AI trained to provide mental health support
        - For immediate crisis support, contact emergency services (911) or crisis hotlines
        - Consider professional therapy for ongoing mental health needs
        - I don't diagnose conditions or prescribe medications
        **Privacy:** Your conversations and emotion data are not stored or shared.
        """)
    @spaces.GPU
    def respond(message, chat_history):
        if not message.strip():
            return "", chat_history, None

        import time

        start = time.time()
        bot_response = chat_with_kenko(message, chat_history)
        text_time = time.time() - start
        print(f"Text Generation Time: {text_time:.2f} seconds: {len(bot_response)} characters")
        chat_history.append((message, bot_response))

        tts_start = time.time()
        print(f"Generating TTS for: '{bot_response[:100]}...'")
        audio = generate_tts(bot_response)
        tts_time = time.time() - tts_start
        print(f"TTS Generation Time: {tts_time:.2f} seconds")
        print(f"TOTAL TIME: {time.time() - start:.2f}s")

        return "", chat_history, audio

    def toggle_examples():
        return gr.Row(visible=True)



    submit = msg.submit(fn=respond, inputs=[msg, chatbot], outputs=[msg, chatbot, audio_output])
    send = send_btn.click(fn=respond, inputs=[msg, chatbot], outputs=[msg, chatbot, audio_output])
    clear_btn.click(lambda: [], None, outputs=[chatbot, audio_output])
    examples_btn.click(toggle_examples, outputs=examples_row)


    webcam_input.stream(
    analyze_emotion,
    inputs=webcam_input,
    outputs=emotion_output,
    stream_every=1,
    time_limit=60
)

    timer = gr.Timer(value=5)


    timer.tick(
    fn=lambda: (update_emotion_status()),
    outputs=[emotion_status]
)



if __name__ == "__main__":
    print("Starting Kenko Mental Health Assistant with Emotion Detection...")
    demo.launch(
    share=True,
    show_error=True
)