Spaces:
Runtime error
Runtime error
Commit
·
a8221b0
1
Parent(s):
3bb51ac
draft pipeline
Browse files
app.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from transformers import pipeline, AutoModelForImageClassification, AutoFeatureExtractor
|
| 4 |
+
import requests
|
| 5 |
+
import asyncio
|
| 6 |
+
import httpx
|
| 7 |
+
import time
|
| 8 |
+
import io
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import PIL
|
| 11 |
+
|
| 12 |
+
HF_MODEL_PATH = (
|
| 13 |
+
"ImageIN/levit-192_finetuned_on_unlabelled_IA_with_snorkel_labels"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
classif_model = AutoModelForImageClassification.from_pretrained(HF_MODEL_PATH)
|
| 17 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(HF_MODEL_PATH)
|
| 18 |
+
|
| 19 |
+
classif_pipeline = pipeline(
|
| 20 |
+
"image-classification", model=classif_model, feature_extractor=feature_extractor
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
OUTPUT_SENTENCE = "This image is {result}."
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_manifest(inputs):
|
| 27 |
+
with requests.get(inputs) as r:
|
| 28 |
+
return r.json()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_image_urls_from_manifest(data):
|
| 32 |
+
image_urls = []
|
| 33 |
+
for sequences in data['sequences']:
|
| 34 |
+
for canvases in sequences['canvases']:
|
| 35 |
+
image_urls.extend(image['resource']['@id'] for image in canvases['images'])
|
| 36 |
+
return image_urls
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def resize_iiif_urls(im_url, size='224'):
|
| 40 |
+
parts = im_url.split("/")
|
| 41 |
+
parts[6] = size, size
|
| 42 |
+
return "/".join(parts)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
async def get_image(client, url):
|
| 46 |
+
try:
|
| 47 |
+
resp = await client.get(url, timeout=30)
|
| 48 |
+
return Image.open(io.BytesIO(resp.content))
|
| 49 |
+
except (PIL.UnidentifiedImageError, httpx.ReadTimeout):
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
async def get_images(urls):
|
| 54 |
+
async with httpx.AsyncClient() as client:
|
| 55 |
+
|
| 56 |
+
tasks = [asyncio.ensure_future(get_image(client, url)) for url in urls]
|
| 57 |
+
images = await asyncio.gather(*tasks)
|
| 58 |
+
return [image for image in images if image is not None]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def predict(inputs):
|
| 62 |
+
data = load_manifest(inputs)
|
| 63 |
+
urls = get_image_urls_from_manifest(data)
|
| 64 |
+
resized_urls = [resize_iiif_urls(url) for url in urls]
|
| 65 |
+
images = asyncio.run(get_images(resized_urls))
|
| 66 |
+
predicted_images = []
|
| 67 |
+
for image in images:
|
| 68 |
+
top_pred = classif_pipeline(image, top_k=1)[0]
|
| 69 |
+
if top_pred['label'] == 'illustrated':
|
| 70 |
+
predicted_images.append((image, top_pred['score']))
|
| 71 |
+
if len(predicted_images):
|
| 72 |
+
return predicted_images
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
demo = gr.Interface(
|
| 76 |
+
fn=predict,
|
| 77 |
+
inputs=gr.Text(),
|
| 78 |
+
outputs=gr.Gallery(),
|
| 79 |
+
title="ImageIN",
|
| 80 |
+
description="Identify illustrations in pages of historical books!",
|
| 81 |
+
)
|
| 82 |
+
demo.launch(debug=True, share=True)
|