Spaces:
Paused
Paused
rick
commited on
clean & organise the source code
Browse files- core/audio_files.py +99 -0
- core/speech_to_text.py +81 -1
- pages/main.py +3 -179
core/audio_files.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#coding: utf-8
|
2 |
+
from pydub import AudioSegment
|
3 |
+
#from openai import OpenAI
|
4 |
+
#from io import BytesIO
|
5 |
+
#from typing import Any
|
6 |
+
#from typing import Dict
|
7 |
+
#from typing import IO
|
8 |
+
from typing import List
|
9 |
+
from typing import Optional
|
10 |
+
from typing import Tuple
|
11 |
+
from typing import Union
|
12 |
+
import base64
|
13 |
+
import io
|
14 |
+
|
15 |
+
def concatenate_audio_files(audio_list: List[Tuple[Union[bytes, str], float]]) -> Optional[bytes]:
|
16 |
+
"""
|
17 |
+
Concatène plusieurs fichiers audio avec des effets sonores.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
audio_list (List[Tuple[Union[bytes, str], float]]): Une liste de tuples, chacun contenant
|
21 |
+
des octets audio (ou une chaîne base64) et la durée.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Optional[bytes]: L'audio concaténé sous forme d'octets, ou None en cas d'erreur.
|
25 |
+
"""
|
26 |
+
# Créer un segment audio vide
|
27 |
+
final_audio = AudioSegment.empty()
|
28 |
+
|
29 |
+
try:
|
30 |
+
# Charger les effets sonores
|
31 |
+
begin_sound = AudioSegment.from_mp3(
|
32 |
+
"sound-effects/voice-message-play-begin/voice-message-play-begin-1.mp3"
|
33 |
+
)
|
34 |
+
end_sound = AudioSegment.from_mp3(
|
35 |
+
"sound-effects/voice-message-play-ending/voice-message-play-ending-1.mp3"
|
36 |
+
)
|
37 |
+
|
38 |
+
# 5 secondes de silence
|
39 |
+
silence = AudioSegment.silent(duration=1500) # 1500 ms = 1.5 secondes
|
40 |
+
|
41 |
+
for audio_data, _ in audio_list:
|
42 |
+
# Convertir en bytes si c'est une chaîne base64
|
43 |
+
if isinstance(audio_data, str):
|
44 |
+
audio_bytes = base64.b64decode(audio_data)
|
45 |
+
else:
|
46 |
+
audio_bytes = audio_data
|
47 |
+
|
48 |
+
# Convertir les octets en un segment audio
|
49 |
+
segment = AudioSegment.from_mp3(io.BytesIO(audio_bytes))
|
50 |
+
|
51 |
+
# Ajouter le son de début, le segment TTS, le son de fin et le silence
|
52 |
+
final_audio += begin_sound + segment + end_sound + silence
|
53 |
+
|
54 |
+
|
55 |
+
# Convertir le segment audio final en octets
|
56 |
+
buffer = io.BytesIO()
|
57 |
+
final_audio.export(buffer, format="mp3")
|
58 |
+
return buffer.getvalue()
|
59 |
+
except IOError as e:
|
60 |
+
print(f"Erreur lors de la lecture ou de l'écriture des fichiers audio : {e}")
|
61 |
+
return None
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Une erreur inattendue s'est produite : {e}")
|
64 |
+
return None
|
65 |
+
|
66 |
+
|
67 |
+
def split_audio(audio_file, max_size_mb: int = 25) -> List[bytes]:
|
68 |
+
"""
|
69 |
+
Divise un fichier audio en segments de taille maximale spécifiée.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
audio_file: Fichier audio ouvert en mode binaire.
|
73 |
+
max_size_mb (int): Taille maximale de chaque segment en Mo.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
List[bytes]: Liste des segments audio divisés sous forme de bytes.
|
77 |
+
"""
|
78 |
+
try:
|
79 |
+
audio_file.seek(0)
|
80 |
+
audio = AudioSegment.from_file(audio_file)
|
81 |
+
duration_ms = len(audio)
|
82 |
+
segment_duration_ms = int(
|
83 |
+
(max_size_mb * 1024 * 1024 * 8) /
|
84 |
+
(audio.frame_rate * audio.sample_width * audio.channels)
|
85 |
+
)
|
86 |
+
|
87 |
+
segments = []
|
88 |
+
for start in range(0, duration_ms, segment_duration_ms):
|
89 |
+
end = min(start + segment_duration_ms, duration_ms)
|
90 |
+
segment = audio[start:end]
|
91 |
+
|
92 |
+
with io.BytesIO() as buffer:
|
93 |
+
segment.export(buffer, format="mp3")
|
94 |
+
segments.append(buffer.getvalue())
|
95 |
+
|
96 |
+
return segments
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Une erreur s'est produite lors de la division de l'audio : {e}")
|
99 |
+
return []
|
core/speech_to_text.py
CHANGED
@@ -3,7 +3,16 @@
|
|
3 |
import requests # Pour envoyer des requêtes HTTP à l'API
|
4 |
import json # Pour traiter les réponses JSON de l'API
|
5 |
from os import getenv
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def huggingface_endpoints_stt(fichier_audio: str) -> str:
|
9 |
# Définir l'URL de l'endpoint d'inférence sur Hugging Face
|
@@ -41,6 +50,73 @@ def huggingface_endpoints_stt(fichier_audio: str) -> str:
|
|
41 |
# En cas d'erreur, afficher le code de statut et le message
|
42 |
raise Exception(f"Erreur API: {response.status_code}, {response.text}")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Exemple d'utilisation de la fonction
|
45 |
if __name__ == "__main__":
|
46 |
fichier_audio = "sample_1.wav" # Remplacez par votre fichier audio
|
@@ -56,3 +132,7 @@ if __name__ == "__main__":
|
|
56 |
"""
|
57 |
Supported content types are:\n application/json, application/json; charset=UTF-8, text/csv, text/plain, image/png, image/jpeg, image/jpg, image/tiff, image/bmp, image/gif, image/webp, image/x-image, audio/x-flac, audio/flac, audio/mpeg, audio/x-mpeg-3, audio/wave, audio/wav, audio/x-wav, audio/ogg, audio/x-audio, audio/webm, audio/webm;codecs=opus, audio/AMR, audio/amr, audio/AMR-WB, audio/AMR-WB+, audio/m4a, audio/x-m4a\n
|
58 |
"""
|
|
|
|
|
|
|
|
|
|
3 |
import requests # Pour envoyer des requêtes HTTP à l'API
|
4 |
import json # Pour traiter les réponses JSON de l'API
|
5 |
from os import getenv
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from openai import OpenAI
|
8 |
+
from io import BytesIO
|
9 |
+
#from typing import Any
|
10 |
+
#from typing import Dict
|
11 |
+
from typing import IO
|
12 |
+
#from typing import List
|
13 |
+
from typing import Optional
|
14 |
+
#from typing import Tuple
|
15 |
+
from typing import Union
|
16 |
|
17 |
def huggingface_endpoints_stt(fichier_audio: str) -> str:
|
18 |
# Définir l'URL de l'endpoint d'inférence sur Hugging Face
|
|
|
50 |
# En cas d'erreur, afficher le code de statut et le message
|
51 |
raise Exception(f"Erreur API: {response.status_code}, {response.text}")
|
52 |
|
53 |
+
|
54 |
+
|
55 |
+
# ############################################################
|
56 |
+
|
57 |
+
|
58 |
+
def transcribe_audio(filepath: Union[str, IO], language: Optional[str] = None) -> str:
|
59 |
+
"""
|
60 |
+
Transcrit un fichier audio temporaire en texte.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
filepath Chemin vers le fichier audio temporaire à transcrire.
|
64 |
+
language (Optional[str]): La langue de l'audio. Par défaut None.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
str: Le texte transcrit.
|
68 |
+
"""
|
69 |
+
max_size_mb = 25
|
70 |
+
client = OpenAI(api_key=getenv("OPENAI_API_KEY"))
|
71 |
+
try:
|
72 |
+
transcriptions = []
|
73 |
+
with open(filepath if isinstance(filepath, str) else filepath.name, "rb") as f:
|
74 |
+
# filepath peut etre un chemin vers un fichier audio ou un objet IO
|
75 |
+
# verifier si le fichier audio fait plus de 25 Mo
|
76 |
+
|
77 |
+
# Diviser l'audio en segments de taille maximale
|
78 |
+
#segments = split_audio(f, max_size_mb)
|
79 |
+
f.seek(0)
|
80 |
+
audio = AudioSegment.from_file(f)
|
81 |
+
duration_ms = len(audio)
|
82 |
+
segment_duration_ms = int(
|
83 |
+
(max_size_mb * 1024 * 1024 * 8) /
|
84 |
+
(audio.frame_rate * audio.sample_width * audio.channels)
|
85 |
+
)
|
86 |
+
|
87 |
+
for start in range(0, duration_ms, segment_duration_ms):
|
88 |
+
end = min(start + segment_duration_ms, duration_ms)
|
89 |
+
segment = audio[start:end]
|
90 |
+
|
91 |
+
buffer = BytesIO()
|
92 |
+
segment.export(buffer, format="mp3")
|
93 |
+
buffer.seek(0)
|
94 |
+
|
95 |
+
if not( language ):
|
96 |
+
response = client.audio.transcriptions.create(
|
97 |
+
model="whisper-1",
|
98 |
+
file=("audio.mp3", buffer),
|
99 |
+
response_format="text"
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
response = client.audio.transcriptions.create(
|
103 |
+
model="whisper-1",
|
104 |
+
file=("audio.mp3", buffer),
|
105 |
+
language=language,
|
106 |
+
response_format="text"
|
107 |
+
)
|
108 |
+
|
109 |
+
transcriptions.append(response)
|
110 |
+
|
111 |
+
return " ".join(transcriptions)
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Erreur lors de la transcription de l'audio : {e}")
|
114 |
+
return ""
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
# Exemple d'utilisation de la fonction
|
121 |
if __name__ == "__main__":
|
122 |
fichier_audio = "sample_1.wav" # Remplacez par votre fichier audio
|
|
|
132 |
"""
|
133 |
Supported content types are:\n application/json, application/json; charset=UTF-8, text/csv, text/plain, image/png, image/jpeg, image/jpg, image/tiff, image/bmp, image/gif, image/webp, image/x-image, audio/x-flac, audio/flac, audio/mpeg, audio/x-mpeg-3, audio/wave, audio/wav, audio/x-wav, audio/ogg, audio/x-audio, audio/webm, audio/webm;codecs=opus, audio/AMR, audio/amr, audio/AMR-WB, audio/AMR-WB+, audio/m4a, audio/x-m4a\n
|
134 |
"""
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
pages/main.py
CHANGED
@@ -33,8 +33,9 @@ from core.files import read_file
|
|
33 |
from core.text_to_speech import openai_tts
|
34 |
from core.DetectLanguage import detect_language
|
35 |
from core.speech_to_text import huggingface_endpoints_stt
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
# Au début du fichier, après les imports
|
40 |
st.set_page_config(
|
@@ -69,151 +70,6 @@ def process_tts_message(text_response: str) -> Tuple[Optional[bytes], Optional[f
|
|
69 |
st.error(f"Une erreur s'est produite lors de la conversion texte-parole : {e}")
|
70 |
return None, None
|
71 |
|
72 |
-
# ecrire ici la fonction: split_audio
|
73 |
-
def split_audio(audio_file, max_size_mb: int = 25) -> List[bytes]:
|
74 |
-
"""
|
75 |
-
Divise un fichier audio en segments de taille maximale spécifiée.
|
76 |
-
|
77 |
-
Args:
|
78 |
-
audio_file: Fichier audio ouvert en mode binaire.
|
79 |
-
max_size_mb (int): Taille maximale de chaque segment en Mo.
|
80 |
-
|
81 |
-
Returns:
|
82 |
-
List[bytes]: Liste des segments audio divisés sous forme de bytes.
|
83 |
-
"""
|
84 |
-
try:
|
85 |
-
audio_file.seek(0)
|
86 |
-
audio = AudioSegment.from_file(audio_file)
|
87 |
-
duration_ms = len(audio)
|
88 |
-
segment_duration_ms = int(
|
89 |
-
(max_size_mb * 1024 * 1024 * 8) /
|
90 |
-
(audio.frame_rate * audio.sample_width * audio.channels)
|
91 |
-
)
|
92 |
-
|
93 |
-
segments = []
|
94 |
-
for start in range(0, duration_ms, segment_duration_ms):
|
95 |
-
end = min(start + segment_duration_ms, duration_ms)
|
96 |
-
segment = audio[start:end]
|
97 |
-
|
98 |
-
with io.BytesIO() as buffer:
|
99 |
-
segment.export(buffer, format="mp3")
|
100 |
-
segments.append(buffer.getvalue())
|
101 |
-
|
102 |
-
return segments
|
103 |
-
except Exception as e:
|
104 |
-
print(f"Une erreur s'est produite lors de la division de l'audio : {e}")
|
105 |
-
return []
|
106 |
-
|
107 |
-
|
108 |
-
def transcribe_audio(filepath: Union[str, IO], language: Optional[str] = None) -> str:
|
109 |
-
"""
|
110 |
-
Transcrit un fichier audio temporaire en texte.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
filepath Chemin vers le fichier audio temporaire à transcrire.
|
114 |
-
language (Optional[str]): La langue de l'audio. Par défaut None.
|
115 |
-
|
116 |
-
Returns:
|
117 |
-
str: Le texte transcrit.
|
118 |
-
"""
|
119 |
-
max_size_mb = 25
|
120 |
-
|
121 |
-
try:
|
122 |
-
transcriptions = []
|
123 |
-
with open(filepath if isinstance(filepath, str) else filepath.name, "rb") as f:
|
124 |
-
# filepath peut etre un chemin vers un fichier audio ou un objet IO
|
125 |
-
# verifier si le fichier audio fait plus de 25 Mo
|
126 |
-
|
127 |
-
# Diviser l'audio en segments de taille maximale
|
128 |
-
#segments = split_audio(f, max_size_mb)
|
129 |
-
f.seek(0)
|
130 |
-
audio = AudioSegment.from_file(f)
|
131 |
-
duration_ms = len(audio)
|
132 |
-
segment_duration_ms = int(
|
133 |
-
(max_size_mb * 1024 * 1024 * 8) /
|
134 |
-
(audio.frame_rate * audio.sample_width * audio.channels)
|
135 |
-
)
|
136 |
-
|
137 |
-
for start in range(0, duration_ms, segment_duration_ms):
|
138 |
-
end = min(start + segment_duration_ms, duration_ms)
|
139 |
-
segment = audio[start:end]
|
140 |
-
|
141 |
-
buffer = BytesIO()
|
142 |
-
segment.export(buffer, format="mp3")
|
143 |
-
buffer.seek(0)
|
144 |
-
|
145 |
-
if not( language ):
|
146 |
-
response = client.audio.transcriptions.create(
|
147 |
-
model="whisper-1",
|
148 |
-
file=("audio.mp3", buffer),
|
149 |
-
response_format="text"
|
150 |
-
)
|
151 |
-
else:
|
152 |
-
response = client.audio.transcriptions.create(
|
153 |
-
model="whisper-1",
|
154 |
-
file=("audio.mp3", buffer),
|
155 |
-
language=language,
|
156 |
-
response_format="text"
|
157 |
-
)
|
158 |
-
|
159 |
-
transcriptions.append(response)
|
160 |
-
|
161 |
-
return " ".join(transcriptions)
|
162 |
-
except Exception as e:
|
163 |
-
print(f"Erreur lors de la transcription de l'audio : {e}")
|
164 |
-
return ""
|
165 |
-
|
166 |
-
|
167 |
-
def concatenate_audio_files(audio_list: List[Tuple[Union[bytes, str], float]]) -> Optional[bytes]:
|
168 |
-
"""
|
169 |
-
Concatène plusieurs fichiers audio avec des effets sonores.
|
170 |
-
|
171 |
-
Args:
|
172 |
-
audio_list (List[Tuple[Union[bytes, str], float]]): Une liste de tuples, chacun contenant
|
173 |
-
des octets audio (ou une chaîne base64) et la durée.
|
174 |
-
|
175 |
-
Returns:
|
176 |
-
Optional[bytes]: L'audio concaténé sous forme d'octets, ou None en cas d'erreur.
|
177 |
-
"""
|
178 |
-
# Créer un segment audio vide
|
179 |
-
final_audio = AudioSegment.empty()
|
180 |
-
|
181 |
-
try:
|
182 |
-
# Charger les effets sonores
|
183 |
-
begin_sound = AudioSegment.from_mp3(
|
184 |
-
"sound-effects/voice-message-play-begin/voice-message-play-begin-1.mp3"
|
185 |
-
)
|
186 |
-
end_sound = AudioSegment.from_mp3(
|
187 |
-
"sound-effects/voice-message-play-ending/voice-message-play-ending-1.mp3"
|
188 |
-
)
|
189 |
-
|
190 |
-
# 5 secondes de silence
|
191 |
-
silence = AudioSegment.silent(duration=1500) # 1500 ms = 1.5 secondes
|
192 |
-
|
193 |
-
for audio_data, _ in audio_list:
|
194 |
-
# Convertir en bytes si c'est une chaîne base64
|
195 |
-
if isinstance(audio_data, str):
|
196 |
-
audio_bytes = base64.b64decode(audio_data)
|
197 |
-
else:
|
198 |
-
audio_bytes = audio_data
|
199 |
-
|
200 |
-
# Convertir les octets en un segment audio
|
201 |
-
segment = AudioSegment.from_mp3(io.BytesIO(audio_bytes))
|
202 |
-
|
203 |
-
# Ajouter le son de début, le segment TTS, le son de fin et le silence
|
204 |
-
final_audio += begin_sound + segment + end_sound + silence
|
205 |
-
|
206 |
-
|
207 |
-
# Convertir le segment audio final en octets
|
208 |
-
buffer = io.BytesIO()
|
209 |
-
final_audio.export(buffer, format="mp3")
|
210 |
-
return buffer.getvalue()
|
211 |
-
except IOError as e:
|
212 |
-
print(f"Erreur lors de la lecture ou de l'écriture des fichiers audio : {e}")
|
213 |
-
return None
|
214 |
-
except Exception as e:
|
215 |
-
print(f"Une erreur inattendue s'est produite : {e}")
|
216 |
-
return None
|
217 |
|
218 |
def process_message(
|
219 |
message: str,
|
@@ -252,7 +108,6 @@ def process_message(
|
|
252 |
st.error(f"Une erreur s'est produite lors de la génération de la réponse : {e}")
|
253 |
return ""
|
254 |
|
255 |
-
|
256 |
class GlobalSystemPrompts:
|
257 |
"""Class to store global system prompts."""
|
258 |
|
@@ -318,7 +173,6 @@ LANGUAGES_EMOJI = {
|
|
318 |
"Vietnamese": "🇻🇳", "Welsh": "🏴"
|
319 |
}
|
320 |
|
321 |
-
|
322 |
def convert_iso6391_to_language_name(language_code: str,
|
323 |
filter_mode=True) -> str:
|
324 |
"""
|
@@ -430,9 +284,6 @@ def init_process_mode(
|
|
430 |
return system_prompt, operation_prompt
|
431 |
return "", ""
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
@st.dialog("Settings")
|
437 |
def tts_settings(name__tts_voice,
|
438 |
state__tts_with_text,
|
@@ -467,7 +318,6 @@ def tts_settings(name__tts_voice,
|
|
467 |
#st.session_state.
|
468 |
st.rerun()
|
469 |
|
470 |
-
|
471 |
@st.fragment
|
472 |
def recorder_released():
|
473 |
if "rec_widget" in st.session_state:
|
@@ -681,13 +531,11 @@ def main_page():
|
|
681 |
icon="ℹ️"):
|
682 |
st.subheader(f"version: {__version__}")
|
683 |
st.info(get_translation("info_app"))
|
684 |
-
|
685 |
|
686 |
with st.expander(f"{get_translation('selection_langue')}",
|
687 |
expanded=True,
|
688 |
icon="🌐"):
|
689 |
# Conteneur pour la sélection de langue
|
690 |
-
|
691 |
# Sélection multiple des langues de destination
|
692 |
st.multiselect(
|
693 |
label=get_translation("langues_destination"),
|
@@ -707,14 +555,6 @@ def main_page():
|
|
707 |
)
|
708 |
|
709 |
st.experimental_audio_input("Record a voice message",on_change=recorder_released, key="rec_widget")
|
710 |
-
#audiorecorder(
|
711 |
-
# start_prompt=get_translation("cliquez_enregistrer"),
|
712 |
-
# stop_prompt=get_translation("cliquez_arreter"),
|
713 |
-
# pause_prompt=get_translation("cliquez_pause"),
|
714 |
-
# show_visualizer=True,
|
715 |
-
# key="vocal_chat_input"
|
716 |
-
#)
|
717 |
-
|
718 |
|
719 |
if st.session_state.user_input:
|
720 |
|
@@ -757,7 +597,6 @@ def main_page():
|
|
757 |
st.error("Erreur : Les prompts système ou d'opération sont vides.")
|
758 |
raise ValueError("Les prompts système ou d'opération ne peuvent pas être vides.")
|
759 |
|
760 |
-
|
761 |
with st.status(f'({target_language_name}) - {get_translation("traduction_en_cours")}', expanded=True) as response_status:
|
762 |
with st.chat_message("assistant", avatar="👻"):
|
763 |
message_placeholder = st.empty()
|
@@ -767,7 +606,6 @@ def main_page():
|
|
767 |
st.session_state.system_prompt
|
768 |
)
|
769 |
|
770 |
-
|
771 |
response_status.update(label=f'({target_language_name}) - {get_translation("traduction_en_cours")}', state="running", expanded=True)
|
772 |
for response_chunk in st.session_state.response_generator:
|
773 |
message_placeholder.markdown(response_chunk)
|
@@ -787,13 +625,11 @@ def main_page():
|
|
787 |
else:
|
788 |
response_status.update(label=f'({target_language_name}) - {get_translation("erreur_synthese_vocale")}', state="error", expanded=False)
|
789 |
|
790 |
-
|
791 |
else:
|
792 |
response_status.update(label=f'({target_language_name}) - {get_translation("traduction_terminee")}', state="complete", expanded=False)
|
793 |
else:
|
794 |
response_status.update(label=f'({target_language_name}) - {get_translation("erreur_traduction")}', state="error", expanded=False)
|
795 |
|
796 |
-
|
797 |
if st.session_state.audio_list:
|
798 |
with st.status(f"{get_translation('concatenation_audio_en_cours')}", expanded=False) as audio_status:
|
799 |
audio_status.update(label=f"{get_translation('concatenation_audio_en_cours')}", state="running", expanded=False)
|
@@ -805,7 +641,6 @@ def main_page():
|
|
805 |
st.session_state.timestamp = time.strftime("%Y%m%d-%H%M%S")
|
806 |
st.session_state.langues = "_".join([lang["iso-639-1"] for lang in st.session_state.selected_languages])
|
807 |
st.session_state.nom_fichier = f"reponse_audio_{st.session_state.langues}_{st.session_state.timestamp}.mp3"
|
808 |
-
|
809 |
|
810 |
st.audio(st.session_state.final_audio, format="audio/mp3", autoplay=st.session_state.autoplay_tts)
|
811 |
|
@@ -819,23 +654,12 @@ def main_page():
|
|
819 |
key=f"download_button_{st.session_state.langues}_{st.session_state.timestamp}",
|
820 |
)
|
821 |
|
822 |
-
# ##
|
823 |
audio_status.update(label=f"{get_translation('concatenation_audio_terminee')}", state="complete", expanded=True)
|
824 |
except Exception as e:
|
825 |
st.error(f"{get_translation('erreur_concatenation_audio')} : {str(e)}")
|
826 |
|
827 |
-
# ##
|
828 |
audio_status.update(label=f"{get_translation('erreur_concatenation_audio')} : {str(e)}", state="error", expanded=True)
|
829 |
|
830 |
-
#clear_inputs_garbages()
|
831 |
-
# Interface utilisateur pour l'enregistrement audio
|
832 |
-
# st.write(f"🗣️ {get_translation('enregistrez_message')}")
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
|
840 |
|
841 |
def clear_inputs_garbages(sessions_state_list: Optional[list] =
|
|
|
33 |
from core.text_to_speech import openai_tts
|
34 |
from core.DetectLanguage import detect_language
|
35 |
from core.speech_to_text import huggingface_endpoints_stt
|
36 |
+
from core.speech_to_text import transcribe_audio
|
37 |
+
from core.audio_files import concatenate_audio_files
|
38 |
+
from core.audio_files import split_audio
|
39 |
|
40 |
# Au début du fichier, après les imports
|
41 |
st.set_page_config(
|
|
|
70 |
st.error(f"Une erreur s'est produite lors de la conversion texte-parole : {e}")
|
71 |
return None, None
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def process_message(
|
75 |
message: str,
|
|
|
108 |
st.error(f"Une erreur s'est produite lors de la génération de la réponse : {e}")
|
109 |
return ""
|
110 |
|
|
|
111 |
class GlobalSystemPrompts:
|
112 |
"""Class to store global system prompts."""
|
113 |
|
|
|
173 |
"Vietnamese": "🇻🇳", "Welsh": "🏴"
|
174 |
}
|
175 |
|
|
|
176 |
def convert_iso6391_to_language_name(language_code: str,
|
177 |
filter_mode=True) -> str:
|
178 |
"""
|
|
|
284 |
return system_prompt, operation_prompt
|
285 |
return "", ""
|
286 |
|
|
|
|
|
|
|
287 |
@st.dialog("Settings")
|
288 |
def tts_settings(name__tts_voice,
|
289 |
state__tts_with_text,
|
|
|
318 |
#st.session_state.
|
319 |
st.rerun()
|
320 |
|
|
|
321 |
@st.fragment
|
322 |
def recorder_released():
|
323 |
if "rec_widget" in st.session_state:
|
|
|
531 |
icon="ℹ️"):
|
532 |
st.subheader(f"version: {__version__}")
|
533 |
st.info(get_translation("info_app"))
|
|
|
534 |
|
535 |
with st.expander(f"{get_translation('selection_langue')}",
|
536 |
expanded=True,
|
537 |
icon="🌐"):
|
538 |
# Conteneur pour la sélection de langue
|
|
|
539 |
# Sélection multiple des langues de destination
|
540 |
st.multiselect(
|
541 |
label=get_translation("langues_destination"),
|
|
|
555 |
)
|
556 |
|
557 |
st.experimental_audio_input("Record a voice message",on_change=recorder_released, key="rec_widget")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
|
559 |
if st.session_state.user_input:
|
560 |
|
|
|
597 |
st.error("Erreur : Les prompts système ou d'opération sont vides.")
|
598 |
raise ValueError("Les prompts système ou d'opération ne peuvent pas être vides.")
|
599 |
|
|
|
600 |
with st.status(f'({target_language_name}) - {get_translation("traduction_en_cours")}', expanded=True) as response_status:
|
601 |
with st.chat_message("assistant", avatar="👻"):
|
602 |
message_placeholder = st.empty()
|
|
|
606 |
st.session_state.system_prompt
|
607 |
)
|
608 |
|
|
|
609 |
response_status.update(label=f'({target_language_name}) - {get_translation("traduction_en_cours")}', state="running", expanded=True)
|
610 |
for response_chunk in st.session_state.response_generator:
|
611 |
message_placeholder.markdown(response_chunk)
|
|
|
625 |
else:
|
626 |
response_status.update(label=f'({target_language_name}) - {get_translation("erreur_synthese_vocale")}', state="error", expanded=False)
|
627 |
|
|
|
628 |
else:
|
629 |
response_status.update(label=f'({target_language_name}) - {get_translation("traduction_terminee")}', state="complete", expanded=False)
|
630 |
else:
|
631 |
response_status.update(label=f'({target_language_name}) - {get_translation("erreur_traduction")}', state="error", expanded=False)
|
632 |
|
|
|
633 |
if st.session_state.audio_list:
|
634 |
with st.status(f"{get_translation('concatenation_audio_en_cours')}", expanded=False) as audio_status:
|
635 |
audio_status.update(label=f"{get_translation('concatenation_audio_en_cours')}", state="running", expanded=False)
|
|
|
641 |
st.session_state.timestamp = time.strftime("%Y%m%d-%H%M%S")
|
642 |
st.session_state.langues = "_".join([lang["iso-639-1"] for lang in st.session_state.selected_languages])
|
643 |
st.session_state.nom_fichier = f"reponse_audio_{st.session_state.langues}_{st.session_state.timestamp}.mp3"
|
|
|
644 |
|
645 |
st.audio(st.session_state.final_audio, format="audio/mp3", autoplay=st.session_state.autoplay_tts)
|
646 |
|
|
|
654 |
key=f"download_button_{st.session_state.langues}_{st.session_state.timestamp}",
|
655 |
)
|
656 |
|
|
|
657 |
audio_status.update(label=f"{get_translation('concatenation_audio_terminee')}", state="complete", expanded=True)
|
658 |
except Exception as e:
|
659 |
st.error(f"{get_translation('erreur_concatenation_audio')} : {str(e)}")
|
660 |
|
|
|
661 |
audio_status.update(label=f"{get_translation('erreur_concatenation_audio')} : {str(e)}", state="error", expanded=True)
|
662 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
|
664 |
|
665 |
def clear_inputs_garbages(sessions_state_list: Optional[list] =
|