Update pages/gpt.py
Browse files- pages/gpt.py +3 -1
pages/gpt.py
CHANGED
|
@@ -32,7 +32,8 @@ top_p = st.sidebar.slider('**Minimum total probability of top words:**', 0.4, 1.
|
|
| 32 |
|
| 33 |
prompt = st.text_input('**Enter text 👇:**')
|
| 34 |
if st.button('**Generate text**'):
|
| 35 |
-
|
|
|
|
| 36 |
with torch.inference_mode():
|
| 37 |
prompt = tokenizer.encode(prompt, return_tensors='pt')
|
| 38 |
out = model.generate(
|
|
@@ -46,6 +47,7 @@ if st.button('**Generate text**'):
|
|
| 46 |
no_repeat_ngram_size=3,
|
| 47 |
num_return_sequences=num_samples,
|
| 48 |
).cpu().numpy()
|
|
|
|
| 49 |
st.write('**_Результат_** 👇')
|
| 50 |
for i, out_ in enumerate(out):
|
| 51 |
# audio_file = open('pict/pole-chudes-priz.mp3', 'rb')
|
|
|
|
| 32 |
|
| 33 |
prompt = st.text_input('**Enter text 👇:**')
|
| 34 |
if st.button('**Generate text**'):
|
| 35 |
+
image_container = st.empty()
|
| 36 |
+
image_container.image("pict/wait.png", caption="that's so long!!!", use_column_width=True)
|
| 37 |
with torch.inference_mode():
|
| 38 |
prompt = tokenizer.encode(prompt, return_tensors='pt')
|
| 39 |
out = model.generate(
|
|
|
|
| 47 |
no_repeat_ngram_size=3,
|
| 48 |
num_return_sequences=num_samples,
|
| 49 |
).cpu().numpy()
|
| 50 |
+
image_container.empty()
|
| 51 |
st.write('**_Результат_** 👇')
|
| 52 |
for i, out_ in enumerate(out):
|
| 53 |
# audio_file = open('pict/pole-chudes-priz.mp3', 'rb')
|