//adapted from RWKV.cpp repo under MIT license // https://github.com/saharNooby/rwkv.cpp #include "otherarch.h" #include "rwkv_v3.h" #include "ggml.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #endif #if defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" #endif #include "utils.h" #include #include #include #include #include #include #include #include #include #define _FILE_OFFSET_BITS 64 // Puts an optional break point, if debug is enabled. #define RWKV_MAYBE_BREAK #include #if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__NT__) #define stat _stat64 #define fstat _fstat64 #define ftell _ftelli64 #define fseek _fseeki64 #ifndef NDEBUG #include #define RWKV_MAYBE_BREAK __debugbreak() #endif #else #if !defined(__APPLE__) #define ftell ftello #define fseek fseeko #endif #endif // --- Error handling --- thread_local enum rwkv_error_flags global_last_error = RWKV_ERROR_NONE; thread_local bool global_print_errors = true; inline enum rwkv_error_flags operator|(enum rwkv_error_flags a, enum rwkv_error_flags b) { return static_cast(static_cast(a) | static_cast(b)); } inline enum rwkv_error_flags operator|=(enum rwkv_error_flags & a, enum rwkv_error_flags b) { return a = a | b; } #define RWKV_MSG(...) do { if (global_print_errors) fprintf(stderr, __VA_ARGS__); } while (0) #define RWKV_CTX_MSG(ctx, ...) do { if (ctx->print_errors) fprintf(stderr, __VA_ARGS__); } while (0) // If the condition x is false, adds ERR_VAL to the last error, and returns RET_VAL. #define RWKV_ASSERT(ERR_VAL, RET_VAL, x) do { \ if (!(x)) { \ global_last_error |= ERR_VAL; \ RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ RWKV_MAYBE_BREAK; \ return RET_VAL; \ } } while (0) // If the condition x is false, adds ERR_VAL to the last error, prints a message to stderr, and returns RET_VAL. #define RWKV_ASSERT_MSG(ERR_VAL, RET_VAL, x, ...) do { \ if (!(x)) { \ global_last_error |= ERR_VAL; \ RWKV_MSG(__VA_ARGS__); \ RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ RWKV_MAYBE_BREAK; \ return RET_VAL; \ } } while (0) // If the condition x is false, adds ERR_VAL to the ctx's last error, prints a message to stderr, and returns RET_VAL. #define RWKV_CTX_ASSERT_MSG(ctx, ERR_VAL, RET_VAL, x, ...) do { \ if (!(x)) { \ ((struct rwkv_context *) ctx)->last_error |= ERR_VAL; \ RWKV_CTX_MSG(ctx, __VA_ARGS__); \ RWKV_CTX_MSG(ctx, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ RWKV_MAYBE_BREAK; \ return RET_VAL; \ } } while (0) // If the condition x is false, adds ERR_VAL to the ctx's last error, and returns RET_VAL. #define RWKV_CTX_ASSERT(ctx, ERR_VAL, RET_VAL, x) do { \ if (!(x)) { \ ((struct rwkv_context *) ctx)->last_error |= ERR_VAL; \ RWKV_CTX_MSG(ctx, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ RWKV_MAYBE_BREAK; \ return RET_VAL; \ } } while (0) // If the condition x is false, returns RET_VAL. #define RWKV_ENSURE(RET_VAL, x) do { \ if (!(x)) { \ RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ RWKV_MAYBE_BREAK; \ return RET_VAL; \ } } while (0) // If the condition x is false, prints a message to stderr, and returns RET_VAL. #define RWKV_ENSURE_MSG(RET_VAL, x, ...) do { \ if (!(x)) { \ RWKV_MSG(__VA_ARGS__); \ RWKV_MSG("\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ RWKV_MAYBE_BREAK; \ return RET_VAL; \ } } while (0) // If the condition x is false, prints a message to stderr, and returns RET_VAL. #define RWKV_CTX_ENSURE_MSG(ctx, RET_VAL, x, ...) do { \ if (!(x)) { \ ((struct rwkv_context *) ctx)->last_error |= ERR_VAL; \ RWKV_CTX_MSG(ctx, __VA_ARGS__); \ RWKV_CTX_MSG(ctx, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \ RWKV_MAYBE_BREAK; \ return RET_VAL; \ } } while (0) #define RWKV_ASSERT_FALSE_MSG(ERR_VAL, x, ...) RWKV_ASSERT_MSG(ERR_VAL, false, x, __VA_ARGS__) #define RWKV_ASSERT_NULL_MSG(ERR_VAL, x, ...) RWKV_ASSERT_MSG(ERR_VAL, NULL, x, __VA_ARGS__) #define RWKV_CTX_ASSERT_FALSE_MSG(ctx, ERR_VAL, x, ...) RWKV_CTX_ASSERT_MSG(ctx, ERR_VAL, false, x, __VA_ARGS__) #define RWKV_ASSERT_FALSE(ERR_VAL, x) RWKV_ASSERT(ERR_VAL, false, x) #define RWKV_ASSERT_NULL(ERR_VAL, x) RWKV_ASSERT(ERR_VAL, NULL, x) #define RWKV_CTX_ASSERT_FALSE(ctx, ERR_VAL, x) RWKV_CTX_ASSERT(ctx, ERR_VAL, false, x) #define RWKV_ENSURE_OR_FALSE(x) RWKV_ENSURE(false, x) #define RWKV_ENSURE_OR_NULL(x) RWKV_ENSURE(NULL, x) #define RWKV_ENSURE_OR_FALSE_MSG(x, ...) RWKV_ENSURE_MSG(false, x, __VA_ARGS__) // --- Utilities --- // Reads a single uint32 value from a file. bool rwkv_fread_uint32(FILE * file, uint32_t & dest) { return fread((void *) &dest, sizeof(uint32_t), 1, file) == 1; } // Reads a single string value from a file. bool rwkv_fread_string(FILE * file, size_t length, std::string & dest) { dest.resize(length); return fread((void *) dest.data(), length, 1, file) == 1; } // Reads a single data buffer from a file. bool rwkv_fread_data(FILE * file, size_t length, void * dest) { return fread(dest, length, 1, file) == 1; } // Writes a single uint32 value to a file. bool rwkv_fwrite_uint32(FILE * file, const uint32_t value) { return fwrite((const void *) &value, sizeof(uint32_t), 1, file); } // Writes a single string value to a file. bool rwkv_fwrite_string(FILE * file, const std::string & value) { return fwrite((const void *) value.data(), value.length(), 1, file) == 1; } // Writes a single data buffer to a file. bool rwkv_fwrite_data(FILE * file, const void * data, const size_t length) { return fwrite(data, length, 1, file) == 1; } // --- File handling --- #define TYPE_UNKNOWN TYPE_COUNT enum rwkv_type { TYPE_FP32, TYPE_FP16, TYPE_Q4_0, TYPE_Q4_1, TYPE_Q4_1_O, // Unsupported TYPE_Q4_2, // Unsupported TYPE_Q4_3, // Unsupported TYPE_Q5_0, TYPE_Q5_1, TYPE_Q8_0, TYPE_COUNT }; #define GGML_TYPE_UNKNOWN GGML_TYPE_COUNT extern const enum ggml_type rwkv_type_to_ggml[TYPE_COUNT + 1] = { GGML_TYPE_F32, /* FP32 */ GGML_TYPE_F16, /* FP16 */ GGML_TYPE_Q4_0, /* Q4_0 */ GGML_TYPE_Q4_1, /* Q4_1 */ GGML_TYPE_UNKNOWN, /* Q4_1_O */ GGML_TYPE_UNKNOWN, /* Q4_2 */ GGML_TYPE_UNKNOWN, /* Q4_3 */ GGML_TYPE_Q5_0, /* Q5_0 */ GGML_TYPE_Q5_1, /* Q5_1 */ GGML_TYPE_Q8_0, /* Q8_0 */ GGML_TYPE_COUNT /* COUNT */ }; extern const enum rwkv_type rwkv_type_from_ggml[GGML_TYPE_COUNT + 1] = { TYPE_FP32, /* FP32 */ TYPE_FP16, /* FP16 */ TYPE_Q4_0, /* Q4_0 */ TYPE_Q4_1, /* Q4_1 */ TYPE_Q4_2, /* Q4_2 */ TYPE_Q4_3, /* Q4_3 */ TYPE_Q5_0, /* Q5_0 */ TYPE_Q5_1, /* Q5_1 */ TYPE_Q8_0, /* Q8_0 */ TYPE_COUNT, /* Q8_1 */ TYPE_COUNT, /* I8 */ TYPE_COUNT, /* I16 */ TYPE_COUNT, /* I32 */ TYPE_COUNT, /* COUNT */ }; extern const char * rwkv_type_to_string[TYPE_COUNT + 1] = {"FP32", "FP16", "Q4_0", "Q4_1", "Q4_1_O", "Q4_2", "Q4_3", "Q5_0", "Q5_1", "Q8_0", "unknown"}; enum rwkv_type rwkv_type_from_string(const char * str) { for (int ord = 0; ord < TYPE_COUNT; ord++) { if (strcmp(str, rwkv_type_to_string[ord]) == 0) { return (enum rwkv_type) ord; } } return TYPE_UNKNOWN; } struct rwkv_file_header { uint32_t magic; uint32_t version; uint32_t n_vocab; uint32_t n_embed; uint32_t n_layer; uint32_t data_type; }; bool rwkv_is_file_version_in_range(uint32_t version) { return version >= RWKV_FILE_VERSION_MIN && version <= RWKV_FILE_VERSION_MAX; } bool rwkv_fread_file_header(FILE * file, struct rwkv_file_header & header, bool verify_data_type = true) { RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, sizeof(struct rwkv_file_header), &header)); RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_MAGIC, header.magic == RWKV_FILE_MAGIC); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_VERSION, rwkv_is_file_version_in_range(header.version), "Unsupported file version %" PRId32, header.version); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_DATA_TYPE, header.data_type < TYPE_COUNT, "Model data type out of range (%" PRId32 " > %" PRId32 ")", header.data_type, TYPE_COUNT - 1); if (verify_data_type) { enum ggml_type ggml_type = rwkv_type_to_ggml[header.data_type]; RWKV_ASSERT_FALSE_MSG( RWKV_ERROR_DATA_TYPE, ggml_type != GGML_TYPE_UNKNOWN, "Models in %s format cannot be loaded anymore because the format was removed.\n" "You need to quantize the model into another format or use an older version of rwkv.cpp.\n" "See https://github.com/saharNooby/rwkv.cpp#compatibility for more info", rwkv_type_to_string[header.data_type] ); RWKV_ASSERT_FALSE_MSG( RWKV_ERROR_DATA_TYPE, (!ggml_is_quantized(ggml_type) || header.version == RWKV_FILE_VERSION_1), "The quantized model file in %s format was created with an old version of rwkv.cpp and can not be loaded anymore.\n" "You need to requantize the model or use an older version of rwkv.cpp.\n" "See https://github.com/saharNooby/rwkv.cpp#compatibility for more info", rwkv_type_to_string[header.data_type] ); } return true; } bool rwkv_fwrite_file_header(FILE * file, const struct rwkv_file_header & header) { RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_WRITE, rwkv_fwrite_data(file, &header, sizeof(struct rwkv_file_header))); return true; } struct rwkv_tensor_header { uint32_t dim_count; uint32_t key_length; uint32_t data_type; uint32_t width; uint32_t height; const size_t size() const; }; struct rwkv_tensor { struct rwkv_tensor_header header; std::string name; uint8_t * data; }; //rwkv relied on the old ggml_nbytes implementation, so backport it here. Fixes breaking change in PR 2874 size_t rwkv_nbytes_old(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); auto a = tensor->ne[3]*tensor->nb[3]; auto b = (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type); return ((a) > (b) ? (a) : (b)); } bool rwkv_fread_tensor_header(FILE * file, struct rwkv_tensor_header & header) { RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, sizeof(struct rwkv_tensor_header) - sizeof(uint32_t), &header)); header.height = 1; RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_SHAPE, header.dim_count == 1 || header.dim_count == 2, "Tensor has an invalid shape (%" PRId32 " dimensions)", header.dim_count); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_DATA_TYPE, header.data_type < TYPE_COUNT, "Tensor data type out of range (%" PRId32 " > %" PRId32 ")", header.data_type, TYPE_COUNT - 1); RWKV_ASSERT_FALSE_MSG( RWKV_ERROR_DATA_TYPE, rwkv_type_to_ggml[header.data_type] != GGML_TYPE_UNKNOWN, "Tensor data type (%s) is no longer supported", rwkv_type_to_string[header.data_type] ); if (header.dim_count == 2) { RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_uint32(file, header.height)); } return true; } bool rwkv_fwrite_tensor_header(FILE * file, const struct rwkv_tensor_header & header) { RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_WRITE, rwkv_fwrite_data(file, &header, sizeof(struct rwkv_tensor_header) - (header.dim_count == 1 ? sizeof(uint32_t) : 0))); return true; } bool rwkv_fskip_tensor_data(FILE * file, const struct rwkv_tensor_header & header) { return fseek(file, header.key_length + header.size(), SEEK_CUR) == 0; } bool rwkv_fread_tensor_header_and_skip(FILE * file, struct rwkv_tensor_header & header) { RWKV_ENSURE_OR_FALSE(rwkv_fread_tensor_header(file, header)); RWKV_ASSERT_FALSE(RWKV_ERROR_DATA, rwkv_fskip_tensor_data(file, header)); return true; } bool rwkv_fread_tensor_data(FILE * file, struct rwkv_tensor & output, void * buffer = NULL) { size_t data_size = output.header.size(); RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_string(file, output.header.key_length, output.name)); if (buffer) { RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, data_size, buffer)); } else { output.data = NULL; RWKV_ASSERT_FALSE(RWKV_ERROR_FILE_READ, rwkv_fskip_tensor_data(file, output.header)); } return true; } bool rwkv_fread_tensor(FILE * file, struct rwkv_tensor & output, void * buffer = NULL) { RWKV_ENSURE_OR_FALSE(rwkv_fread_tensor_header(file, output.header)); RWKV_ENSURE_OR_FALSE(rwkv_fread_tensor_data(file, output, buffer)); return true; } bool rwkv_fread_ggml_tensor_data(FILE * file, const struct rwkv_tensor_header & header, struct ggml_context * ctx, std::string & name, struct ggml_tensor *& tensor) { RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_READ, rwkv_fread_string(file, header.key_length, name), "Failed to read tensor name"); enum ggml_type ggml_type = rwkv_type_to_ggml[header.data_type]; RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_UNSUPPORTED, ggml_type != GGML_TYPE_UNKNOWN, "Unsupported tensor data type %s from %s", rwkv_type_to_string[header.data_type], name.c_str()); tensor = header.dim_count == 1 ? ggml_new_tensor_1d(ctx, ggml_type, header.width) : ggml_new_tensor_2d(ctx, ggml_type, header.width, header.height); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, tensor, "Failed to allocate tensor"); ggml_set_name(tensor, name.c_str()); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_READ, rwkv_fread_data(file, rwkv_nbytes_old(tensor), tensor->data), "Failed to read tensor data from %s", name.c_str()); return true; } bool rwkv_fread_ggml_tensor(FILE * file, struct ggml_context * ctx, std::string & name, struct ggml_tensor *& tensor) { struct rwkv_tensor_header header; RWKV_ENSURE_OR_FALSE_MSG(rwkv_fread_tensor_header(file, header), "Invalid tensor header"); return rwkv_fread_ggml_tensor_data(file, header, ctx, name, tensor); } bool rwkv_fwrite_tensor(FILE * file, const struct rwkv_tensor & tensor) { RWKV_ENSURE_OR_FALSE(rwkv_fwrite_tensor_header(file, tensor.header)); RWKV_ENSURE_OR_FALSE(rwkv_fwrite_string(file, tensor.name)); RWKV_ENSURE_OR_FALSE(rwkv_fwrite_data(file, tensor.data, tensor.header.size())); return true; } // --- Model definition --- struct rwkv_layer { struct ggml_tensor * ln1_weight; struct ggml_tensor * ln1_bias; // RWKV, also called "attention" by the author. struct ggml_tensor * att_time_mix_k; struct ggml_tensor * att_time_mix_v; struct ggml_tensor * att_time_mix_r; struct ggml_tensor * att_time_first; struct ggml_tensor * att_time_decay; struct ggml_tensor * att_key; struct ggml_tensor * att_value; struct ggml_tensor * att_receptance; struct ggml_tensor * att_output; struct ggml_tensor * ln2_weight; struct ggml_tensor * ln2_bias; // FFN. struct ggml_tensor * ffn_time_mix_k; struct ggml_tensor * ffn_time_mix_r; struct ggml_tensor * ffn_key; struct ggml_tensor * ffn_value; struct ggml_tensor * ffn_receptance; }; struct rwkv_model { struct rwkv_file_header header; struct ggml_tensor * emb; struct ggml_tensor * ln0_weight; struct ggml_tensor * ln0_bias; std::unique_ptr layers; struct ggml_tensor * ln_out_weight; struct ggml_tensor * ln_out_bias; struct ggml_tensor * head; }; // --- Operators --- void rwkv_exp_impl(const int n_cols, float * dest, const float * src) { for (int i = 0; i < n_cols; i++) { dest[i] = expf(src[i]); } } void rwkv_1_minus_x_impl(const int n_cols, float * dest, const float * src) { for (int i = 0; i < n_cols; i++) { dest[i] = 1.0F - src[i]; } } void rwkv_sigmoid_impl(const int n_cols, float * dest, const float * src) { for (int i = 0; i < n_cols; i++) { dest[i] = 1.0F / (1.0F + expf(-src[i])); } } void rwkv_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) { for (int i = 0; i < n_cols; i++) { dest[i] = fmaxf(src0[i], src1[i]); } } struct ggml_tensor * rwkv_exp(ggml_context * ctx, struct ggml_tensor * x) { return ggml_map_unary_f32(ctx, x, rwkv_exp_impl); } struct ggml_tensor * rwkv_1_minus_x(ggml_context * ctx, struct ggml_tensor * x) { return ggml_map_unary_f32(ctx, x, rwkv_1_minus_x_impl); } struct ggml_tensor * rwkv_sigmoid(ggml_context * ctx, struct ggml_tensor * x) { return ggml_map_unary_f32(ctx, x, rwkv_sigmoid_impl); } struct ggml_tensor * rwkv_max(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * y) { return ggml_map_binary_f32(ctx, x, y, rwkv_max_impl); } struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) { // LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias` // Looks like ggml_norm does the first part, we only need to apply weight & bias. return ggml_add_inplace(ctx, ggml_mul_inplace(ctx, ggml_norm(ctx, x, default_norm_eps), weight), bias); } // --- Implementation --- // Used as a helper during rwkv_ctx_size calculation. struct rwkv_future_tensor; // Used to calculate the memory usage of ggml contexts before allocating them. // Since ggml uses an internal bump allocator that can't be grown at runtime, we need to ensure we have enough space, // while at the same time not using more memory than necessary. struct rwkv_future_ctx { size_t objects_count = 0; size_t memory_size = 0; size_t scratch_size = 0; // Align to GGML_MEM_ALIGN, which can currently be up to 16 static const size_t align(const size_t size) { return ((size + 15) & ~15); } void add_objects(const size_t size, const size_t count = 1) { this->objects_count += count; if (size && count) { this->add_memory(size, count); } } void add_memory(const size_t size, const size_t count = 1) { this->memory_size += this->align(size) * count; } void add_scratch(const size_t size, const size_t count = 1) { this->scratch_size += this->align(size) * count; } void add_data(const bool use_scratch, const size_t size, const size_t count = 1) { if (use_scratch) { this->add_scratch(size, count); } else { this->add_memory(size, count); } } struct rwkv_future_tensor declare(const enum ggml_type type, const uint64_t width, const uint64_t height = 1); struct rwkv_future_tensor alloc(const enum ggml_type type, const uint64_t width, const uint64_t height = 1, const bool use_scratch = true); }; struct rwkv_future_tensor { enum ggml_type type = GGML_TYPE_COUNT; uint64_t width = 0; uint64_t height = 0; static const size_t size(const enum ggml_type type, const uint64_t width, const uint64_t height) { struct ggml_tensor decoy {}; decoy.type = type; decoy.ne[0] = width; decoy.ne[1] = height; decoy.ne[2] = 1; decoy.ne[3] = 1; return rwkv_nbytes_old(&decoy); } rwkv_future_tensor() {} rwkv_future_tensor(const enum ggml_type type, const uint64_t width, const uint64_t height = 1): type(type), width(width), height(height) {} rwkv_future_tensor(const struct ggml_tensor * ref): type(ref->type), width(ref->ne[0]), height(ref->ne[1]) {} struct rwkv_future_tensor alloc(struct rwkv_future_ctx & ctx, const bool use_scratch = true) const { ctx.add_objects(sizeof(struct ggml_tensor)); ctx.add_data(use_scratch, rwkv_future_tensor::size(type, width, height)); return *this; } struct rwkv_future_tensor view(struct rwkv_future_ctx & ctx) const { ctx.add_objects(sizeof(struct ggml_tensor)); return *this; } struct rwkv_future_tensor subview(struct rwkv_future_ctx & ctx, const uint32_t width, const uint32_t height = 1) const { ctx.add_objects(sizeof(struct ggml_tensor), 2); ctx.add_memory(sizeof(uint32_t) * 2); return rwkv_future_tensor(type, width, height); } struct rwkv_future_tensor dup(struct rwkv_future_ctx & ctx) const { return this->alloc(ctx); } struct rwkv_future_tensor layer_norm(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & weight, const struct rwkv_future_tensor & bias) const { return this->dup(ctx).view(ctx).view(ctx); } struct rwkv_future_tensor repeat(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor reference) const { return reference.dup(ctx); } struct rwkv_future_tensor set_inplace(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor src) { ctx.add_objects(sizeof(struct ggml_tensor)); ctx.add_memory(sizeof(uint32_t) * 5); return this->view(ctx); } struct rwkv_future_tensor consume(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) { return this->view(ctx); } struct rwkv_future_tensor combine(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) const { return this->dup(ctx); } struct rwkv_future_tensor fn(struct rwkv_future_ctx & ctx) const { ctx.add_objects(sizeof(struct ggml_tensor)); ctx.add_memory(sizeof(void *) / sizeof(uint32_t)); return this->dup(ctx); } struct rwkv_future_tensor mul_mat(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) const { return ctx.alloc(GGML_TYPE_F32, this->height, other.height); } struct rwkv_future_tensor get_rows(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor & other) const { return ctx.alloc(GGML_TYPE_F32, this->width, other.width); } }; const size_t rwkv_tensor_header::size() const { return rwkv_future_tensor::size(rwkv_type_to_ggml[this->data_type], this->width, this->height); } struct rwkv_future_tensor rwkv_future_ctx::declare(const enum ggml_type type, const uint64_t width, const uint64_t height) { return rwkv_future_tensor(type, width, height); } struct rwkv_future_tensor rwkv_future_ctx::alloc(const enum ggml_type type, const uint64_t width, const uint64_t height, const bool use_scratch) { return this->declare(type, width, height).alloc(*this, use_scratch); } struct rwkv_ggml_context { std::unique_ptr scratch; struct ggml_context * ctx; rwkv_ggml_context(): ctx(NULL) {} rwkv_ggml_context(const struct rwkv_future_ctx future_ctx): ctx(NULL) { scratch.reset(new(std::nothrow) uint8_t[future_ctx.scratch_size]); if (!scratch) { return; } const size_t memory_required_overhead = size_t(128) * 1024 * 1024; const size_t memory_required_overhead_sc = size_t(64) * 1024 * 1024; ctx = ggml_init({ future_ctx.objects_count * GGML_OBJECT_SIZE + future_ctx.memory_size + memory_required_overhead, NULL, false}); if (!ctx) { return; } ggml_set_scratch(ctx, { 0, memory_required_overhead_sc + future_ctx.scratch_size, scratch.get() }); } struct rwkv_ggml_context & operator=(struct rwkv_ggml_context && source) { scratch.reset(source.scratch.release()); std::swap(ctx, source.ctx); return *this; } ~rwkv_ggml_context() { if (ctx) { ggml_free(ctx); } } }; // An instance of an RWKV model loaded into memory. // Contains all the model weights. // Shared by one or more contexts. struct rwkv_instance { struct rwkv_ggml_context ctx; struct rwkv_model model; // TODO Come up with a better solution to estimate "work tensor" size // The ggml_cgraph allocates a "work tensor" the first time it is used. // Currently, the height of blocks.0.ffn.key.weight is the bottleneck in our implementation of RWKV. // Since it is the largest dimension used in any matrix multiply, it is the size used for the "work tensor". // However, if ggml changes its implementation, or rwkv.cpp changes its own implementation, at any point, // this may become outdated. We need to find a way not to hardcode a specific tensor, but to calculate accurately. // This may come out of a ggml issue: https://github.com/ggerganov/ggml/issues/214 size_t ffn_key_size; }; // The hidden state of a single RWKV layer. // These are mostly used for dividing up the input state, and writing portions of the output state. // But they're also used in building the computation graphs to represent the operations // used from input->output (operating "in place" on a rwkv_layer_state). struct rwkv_layer_state { struct ggml_tensor * ffn_xx; struct ggml_tensor * att_xx; struct ggml_tensor * att_aa; struct ggml_tensor * att_bb; struct ggml_tensor * att_pp; }; // Holds a single computation graph and its ggml context. // Graphs each have their own context so that they can be individually freed and rebuilt. // Graphs read hidden state from the rwkv_context and then write it back to the rwkv_context. // (see rwkv_context.input_layers and rwkv_context.output_layers) struct rwkv_graph { struct rwkv_ggml_context ctx; struct ggml_tensor * tokens; // ggml_cgraph is so large that it can cause stack overflows if not stored on the heap std::unique_ptr cgraph; size_t pre_logits_nodes; size_t pre_logits_leafs; size_t post_logits_nodes; size_t post_logits_leafs; }; // RWKV context for a specific instance. // Contains computation graphs and is used for inference. struct rwkv_context { std::shared_ptr instance; // Reused by all graphs. struct rwkv_ggml_context ctx; struct ggml_tensor * input_state; std::unique_ptr input_layers; struct ggml_tensor * output_state; std::unique_ptr output_layers; struct ggml_tensor * logits; uint32_t n_threads; // The serial graph implements the traditional RNN mode that processes only one token at a time (serial mode). struct rwkv_graph serial_graph; // The sequence graph implements the "sequence mode" (or transformer/GPT mode) that processes multiple tokens at a time. // This can be an order of magnitude or so faster than serial execution if used properly. size_t sequence_len; struct rwkv_graph sequence_graph; enum rwkv_error_flags last_error; bool print_errors; float * state_in = 0; //stores input state, or use null for a new state float * state_out = 0; //stores address of output state buffer float * logits_out = 0; //stores address of output logit buffer size_t gpu_layers; std::vector work_buffer; }; // https://stackoverflow.com/a/6458689 template bool rwkv_set_params(struct rwkv_model & model, F callback) { RWKV_ENSURE_OR_FALSE(callback("emb.weight", model.emb)); RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.weight", model.ln0_weight)); RWKV_ENSURE_OR_FALSE(callback("blocks.0.ln0.bias", model.ln0_bias)); uint32_t n_layer = model.header.n_layer; std::unique_ptr layers(new(std::nothrow) struct rwkv_layer[n_layer]); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, layers.get(), "Failed to allocate model layers"); model.layers = std::move(layers); for (uint32_t i = 0; i < n_layer; i++) { char buffer[128]; size_t offset = sprintf(buffer, "blocks.%" PRId32 ".", i); rwkv_layer & layer = model.layers[i]; RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.weight"), buffer), layer.ln1_weight)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln1.bias"), buffer), layer.ln1_bias)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_k"), buffer), layer.att_time_mix_k)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_v"), buffer), layer.att_time_mix_v)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_mix_r"), buffer), layer.att_time_mix_r)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_first"), buffer), layer.att_time_first)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.time_decay"), buffer), layer.att_time_decay)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.key.weight"), buffer), layer.att_key)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.value.weight"), buffer), layer.att_value)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.receptance.weight"), buffer), layer.att_receptance)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "att.output.weight"), buffer), layer.att_output)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.weight"), buffer), layer.ln2_weight)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ln2.bias"), buffer), layer.ln2_bias)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_k"), buffer), layer.ffn_time_mix_k)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.time_mix_r"), buffer), layer.ffn_time_mix_r)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.key.weight"), buffer), layer.ffn_key)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.value.weight"), buffer), layer.ffn_value)); RWKV_ENSURE_OR_FALSE(callback((strcpy(&buffer[offset], "ffn.receptance.weight"), buffer), layer.ffn_receptance)); } RWKV_ENSURE_OR_FALSE(callback("ln_out.weight", model.ln_out_weight)); RWKV_ENSURE_OR_FALSE(callback("ln_out.bias", model.ln_out_bias)); RWKV_ENSURE_OR_FALSE(callback("head.weight", model.head)); return true; } void rwkv_future_carry_x(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor weight, const struct rwkv_future_tensor bias, struct rwkv_future_tensor & x, struct rwkv_future_tensor & x_prev, struct rwkv_future_tensor & carry ) { if (x.height == 1) { x = x.layer_norm(ctx, weight, bias); x_prev = carry; carry = x; } else { x = x.layer_norm(ctx, weight.repeat(ctx, x), bias.repeat(ctx, x)); x_prev = x.dup(ctx) .set_inplace(ctx, carry) .set_inplace(ctx, x.subview(ctx, x.width, x.height - 1)); carry = x.subview(ctx, x.width); } } void rwkv_carry_x(struct ggml_context * ctx, struct ggml_tensor * weight, struct ggml_tensor * bias, struct ggml_tensor *& x, struct ggml_tensor *& x_prev, struct ggml_tensor *& carry ) { const size_t n_embed = x->ne[0]; const size_t sequence_len = x->ne[1]; if (sequence_len == 1) { // self.layer_norm(x, self.w.blocks[i].ln2) x = rwkv_layer_norm(ctx, x, weight, bias); // xx = state[5*i+0] x_prev = carry; // state[5*i+0] = x carry = x; } else { // self.layer_norm(x, self.w.blocks[i].ln2) x = rwkv_layer_norm(ctx, x, ggml_repeat(ctx, weight, x), ggml_repeat(ctx, bias, x)); // xx = torch.cat((state[5*i+0].to(dtype=self.FLOAT_MODE).unsqueeze(0), x[:-1,:])) x_prev = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embed, sequence_len); x_prev = ggml_set_1d_inplace(ctx, x_prev, carry, 0); x_prev = ggml_set_1d_inplace(ctx, x_prev, ggml_view_1d(ctx, x, n_embed * (sequence_len - 1), 0), n_embed * sizeof(float)); // state[5*i+0] = x[-1,:] carry = ggml_view_1d(ctx, x, n_embed, n_embed * (sequence_len - 1) * sizeof(float)); } } void rwkv_future_att_rkv(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor time_mix_k, const struct rwkv_future_tensor time_mix_v, const struct rwkv_future_tensor time_mix_r, const struct rwkv_future_tensor x, const struct rwkv_future_tensor x_prev, const struct rwkv_future_tensor att_r, const struct rwkv_future_tensor att_k, const struct rwkv_future_tensor att_v, struct rwkv_future_tensor & r, struct rwkv_future_tensor & k, struct rwkv_future_tensor & v ) { const struct rwkv_future_tensor xk = x.combine(ctx, time_mix_k).consume(ctx, x_prev.combine(ctx, time_mix_k.fn(ctx))); const struct rwkv_future_tensor xv = x.combine(ctx, time_mix_v).consume(ctx, x_prev.combine(ctx, time_mix_v.fn(ctx))); const struct rwkv_future_tensor xr = x.combine(ctx, time_mix_r).consume(ctx, x_prev.combine(ctx, time_mix_r.fn(ctx))); r = att_r.mul_mat(ctx, xr).fn(ctx); k = att_k.mul_mat(ctx, xk); v = att_v.mul_mat(ctx, xv); } void rwkv_att_rkv( struct ggml_context * ctx, struct rwkv_layer layer, struct ggml_tensor * x, struct ggml_tensor * x_prev, struct ggml_tensor *& r, struct ggml_tensor *& k, struct ggml_tensor *& v ) { // xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k) struct ggml_tensor * xk = ggml_add_inplace(ctx, ggml_mul(ctx, x, layer.att_time_mix_k), ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_k)) ); // xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v) struct ggml_tensor * xv = ggml_add_inplace(ctx, ggml_mul(ctx, x, layer.att_time_mix_v), ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_v)) ); // xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r) struct ggml_tensor * xr = ggml_add_inplace(ctx, ggml_mul(ctx, x, layer.att_time_mix_r), ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_r)) ); // r = torch.sigmoid(rw @ xr) r = rwkv_sigmoid(ctx, ggml_mul_mat(ctx, layer.att_receptance, xr)); // k = kw @ xk k = ggml_mul_mat(ctx, layer.att_key, xk); // v = vw @ xv v = ggml_mul_mat(ctx, layer.att_value, xv); } struct rwkv_future_tensor rwkv_future_att_wkv(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor time_first, const struct rwkv_future_tensor time_decay, struct rwkv_future_tensor & aa, struct rwkv_future_tensor & bb, struct rwkv_future_tensor & pp, const struct rwkv_future_tensor k, const struct rwkv_future_tensor v ) { struct rwkv_future_tensor ww = time_first.combine(ctx, k); struct rwkv_future_tensor qq = pp.fn(ctx); struct rwkv_future_tensor e1 = pp.combine(ctx, qq).fn(ctx); struct rwkv_future_tensor e2 = ww.combine(ctx, qq).fn(ctx); struct rwkv_future_tensor a = e1.combine(ctx, aa).consume(ctx, e2.combine(ctx, v)); struct rwkv_future_tensor b = e1.combine(ctx, bb).consume(ctx, e2); ww = pp.combine(ctx, time_decay); qq = ww.fn(ctx); e1 = ww.combine(ctx, qq).fn(ctx); e2 = k.combine(ctx, qq).fn(ctx); // aa, bb aa = e1.combine(ctx, aa).consume(ctx, e2.combine(ctx, v)); bb = e1.combine(ctx, bb).consume(ctx, e2); pp = qq; // wkv return a.combine(ctx, b); } struct ggml_tensor * rwkv_att_wkv( struct ggml_context * ctx, struct ggml_tensor * att_time_first, struct ggml_tensor * att_time_decay, struct ggml_tensor * k, struct ggml_tensor * v, struct ggml_tensor *& aa, struct ggml_tensor *& bb, struct ggml_tensor *& pp ) { // ww = time_first + k struct ggml_tensor * ww = ggml_add(ctx, att_time_first, k); // qq = torch.maximum(pp, ww) struct ggml_tensor * qq = rwkv_max(ctx, pp, ww); // e1 = torch.exp(pp - qq) struct ggml_tensor * e1 = rwkv_exp(ctx, ggml_sub(ctx, pp, qq)); // e2 = torch.exp(ww - qq) struct ggml_tensor * e2 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq)); // a = e1 * aa + e2 * v struct ggml_tensor * a = ggml_add_inplace(ctx, ggml_mul(ctx, e1, aa), ggml_mul(ctx, e2, v)); // b = e1 * bb + e2 struct ggml_tensor * b = ggml_add_inplace(ctx, ggml_mul(ctx, e1, bb), e2); // ww = pp + time_decay ww = ggml_add(ctx, pp, att_time_decay); // qq = torch.maximum(ww, k) qq = rwkv_max(ctx, ww, k); // e1 = torch.exp(ww - qq) e1 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq)); // e2 = torch.exp(k[t] - qq) e2 = rwkv_exp(ctx, ggml_sub(ctx, k, qq)); // state[5 * i + 2] = e1 * aa + e2 * v // state[5 * i + 3] = e1 * bb + e2 // state[5 * i + 4] = qq aa = ggml_add_inplace(ctx, ggml_mul(ctx, e1, aa), ggml_mul(ctx, e2, v)); bb = ggml_add_inplace(ctx, ggml_mul(ctx, e1, bb), e2); pp = qq; // wkv = a / b return ggml_div(ctx, a, b); } struct rwkv_future_tensor rwkv_future_att(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor ln1_weight, const struct rwkv_future_tensor ln1_bias, const struct rwkv_future_tensor time_mix_k, const struct rwkv_future_tensor time_mix_v, const struct rwkv_future_tensor time_mix_r, const struct rwkv_future_tensor time_first, const struct rwkv_future_tensor time_decay, const struct rwkv_future_tensor att_r, const struct rwkv_future_tensor att_k, const struct rwkv_future_tensor att_v, const struct rwkv_future_tensor att_output, struct rwkv_future_tensor x, struct rwkv_future_tensor & att_xx, struct rwkv_future_tensor & att_aa, struct rwkv_future_tensor & att_bb, struct rwkv_future_tensor & att_pp ) { struct rwkv_future_tensor x_prev; rwkv_future_carry_x(ctx, ln1_weight, ln1_bias, x, x_prev, att_xx); struct rwkv_future_tensor r, k, v; rwkv_future_att_rkv(ctx, time_mix_k, time_mix_v, time_mix_r, x, x_prev, att_r, att_k, att_v, r, k, v); struct rwkv_future_tensor wkv = rwkv_future_att_wkv(ctx, time_first, time_decay, att_aa, att_bb, att_pp, k, v); return att_output.mul_mat(ctx, r.combine(ctx, wkv)); } struct ggml_tensor * rwkv_att(struct ggml_context * ctx, struct ggml_tensor * x, struct rwkv_layer layer, struct rwkv_layer_state & state) { struct ggml_tensor * x_prev; rwkv_carry_x(ctx, layer.ln1_weight, layer.ln1_bias, x, x_prev, state.att_xx); struct ggml_tensor * r, * k, * v; rwkv_att_rkv(ctx, layer, x, x_prev, r, k, v); struct ggml_tensor * wkv = rwkv_att_wkv(ctx, layer.att_time_first, layer.att_time_decay, k, v, state.att_aa, state.att_bb, state.att_pp); // ow @ (r * xx) return ggml_mul_mat(ctx, layer.att_output, ggml_mul(ctx, r, wkv)); } struct rwkv_future_tensor rwkv_future_ffn(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor ln2_weight, const struct rwkv_future_tensor ln2_bias, const struct rwkv_future_tensor time_mix_k, const struct rwkv_future_tensor time_mix_r, const struct rwkv_future_tensor ffn_k, const struct rwkv_future_tensor ffn_v, const struct rwkv_future_tensor ffn_r, struct rwkv_future_tensor x, struct rwkv_future_tensor & ffn_xx ) { struct rwkv_future_tensor x_prev; rwkv_future_carry_x(ctx, ln2_weight, ln2_bias, x, x_prev, ffn_xx); struct rwkv_future_tensor xk = x.combine(ctx, time_mix_k).consume(ctx, x_prev.combine(ctx, time_mix_k.fn(ctx))); struct rwkv_future_tensor xr = x.combine(ctx, time_mix_r).consume(ctx, x_prev.combine(ctx, time_mix_r.fn(ctx))); struct rwkv_future_tensor r = ffn_r.mul_mat(ctx, xr).fn(ctx); struct rwkv_future_tensor k = ffn_k.mul_mat(ctx, xk).view(ctx).view(ctx); return r.consume(ctx, ffn_v.mul_mat(ctx, k)); } struct ggml_tensor * rwkv_ffn(struct ggml_context * ctx, struct ggml_tensor * x, struct rwkv_layer layer, struct rwkv_layer_state & state) { struct ggml_tensor * x_prev; rwkv_carry_x(ctx, layer.ln2_weight, layer.ln2_bias, x, x_prev, state.ffn_xx); // xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k) // xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k) struct ggml_tensor * xk = ggml_add_inplace( ctx, ggml_mul(ctx, x, layer.ffn_time_mix_k), ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_k)) ); // xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r) struct ggml_tensor * xr = ggml_add_inplace( ctx, ggml_mul(ctx, x, layer.ffn_time_mix_r), ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_r)) ); // r = torch.sigmoid(rw @ xr) struct ggml_tensor * r = rwkv_sigmoid(ctx, ggml_mul_mat(ctx, layer.ffn_receptance, xr)); // k = torch.square(torch.relu(kw @ xk)) struct ggml_tensor * k = ggml_sqr_inplace(ctx, ggml_relu_inplace(ctx, ggml_mul_mat(ctx, layer.ffn_key, xk))); // r * (vw @ k) return ggml_mul_inplace(ctx, r, ggml_mul_mat(ctx, layer.ffn_value, k)); } struct rwkv_future_tensor rwkv_future_graph_work(struct rwkv_future_ctx & ctx, const enum ggml_type type, const size_t ffn_key_height, const size_t n_threads, const size_t sequence_len = 1 ) { #if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS) enum ggml_type mul_mat_type = type == GGML_TYPE_F32 ? GGML_TYPE_F32 : GGML_TYPE_F16; #else enum ggml_type mul_mat_type = ggml_is_quantized(type) ? GGML_TYPE_Q8_1 : type; #endif return ctx.alloc(GGML_TYPE_I8, rwkv_future_tensor::size(mul_mat_type, ffn_key_height, sequence_len) * n_threads + 64 * (n_threads - 1)); } struct rwkv_future_tensor rwkv_future_serial_graph(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor tokens, const size_t n_threads, const struct rwkv_future_tensor emb, const struct rwkv_future_tensor ln0_weight, const struct rwkv_future_tensor ln0_bias, const size_t n_layer, const struct rwkv_future_tensor ln1_weight, const struct rwkv_future_tensor ln1_bias, const struct rwkv_future_tensor att_time_mix_k, const struct rwkv_future_tensor att_time_mix_v, const struct rwkv_future_tensor att_time_mix_r, const struct rwkv_future_tensor att_time_first, const struct rwkv_future_tensor att_time_decay, const struct rwkv_future_tensor att_r, const struct rwkv_future_tensor att_k, const struct rwkv_future_tensor att_v, const struct rwkv_future_tensor att_output, struct rwkv_future_tensor & att_xx, struct rwkv_future_tensor & att_aa, struct rwkv_future_tensor & att_bb, struct rwkv_future_tensor & att_pp, const struct rwkv_future_tensor ln2_weight, const struct rwkv_future_tensor ln2_bias, const struct rwkv_future_tensor ffn_time_mix_k, const struct rwkv_future_tensor ffn_time_mix_r, const struct rwkv_future_tensor ffn_k, const struct rwkv_future_tensor ffn_v, const struct rwkv_future_tensor ffn_r, struct rwkv_future_tensor & ffn_xx, const struct rwkv_future_tensor ln_out_weight, const struct rwkv_future_tensor ln_out_bias, const struct rwkv_future_tensor head ) { struct rwkv_future_tensor x = emb.get_rows(ctx, tokens).layer_norm(ctx, ln0_weight, ln0_bias); for (size_t i = 0; i < n_layer; i++) { x = x.consume(ctx, rwkv_future_att(ctx, ln1_weight, ln1_bias, att_time_mix_k, att_time_mix_v, att_time_mix_r, att_time_first, att_time_decay, att_r, att_k, att_v, att_output, x, att_xx, att_aa, att_bb, att_pp)); x = x.consume(ctx, rwkv_future_ffn(ctx, ln2_weight, ln2_bias, ffn_time_mix_k, ffn_time_mix_r, ffn_k, ffn_v, ffn_r, x, ffn_xx)); ffn_xx.view(ctx); att_xx.view(ctx); att_aa.view(ctx); att_bb.view(ctx); att_pp.view(ctx); } x = x.layer_norm(ctx, ln_out_weight, ln_out_bias); rwkv_future_graph_work(ctx, ffn_k.type, ffn_k.height, n_threads, tokens.width); return head.mul_mat(ctx, x).view(ctx); } bool rwkv_build_serial_graph( struct ggml_context * ctx, struct rwkv_model & model, struct ggml_tensor * tokens, struct rwkv_layer_state * inputs, struct rwkv_layer_state * outputs, struct ggml_tensor * logits, struct ggml_cgraph * cgraph, size_t * const pre_logits_nodes, size_t * const pre_logits_leafs, size_t * const post_logits_nodes, size_t * const post_logits_leafs ) { // x = self.w.emb.weight[token] struct ggml_tensor * x = ggml_get_rows(ctx, model.emb, tokens); // x = self.layer_norm(x, self.w.blocks[0].ln0) x = rwkv_layer_norm(ctx, x, model.ln0_weight, model.ln0_bias); for (size_t i = 0; i < model.header.n_layer; i++) { struct rwkv_layer & layer = model.layers[i]; struct rwkv_layer_state state = inputs[i]; x = ggml_add_inplace(ctx, x, rwkv_att(ctx, x, layer, state)); x = ggml_add_inplace(ctx, x, rwkv_ffn(ctx, x, layer, state)); struct rwkv_layer_state & output = outputs[i]; ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.ffn_xx, output.ffn_xx)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_xx, output.att_xx)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_aa, output.att_aa)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_bb, output.att_bb)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_pp, output.att_pp)); } *pre_logits_nodes = cgraph->n_nodes; *pre_logits_leafs = cgraph->n_leafs; // x = self.layer_norm(x[-1,:], self.w.ln_out) x = rwkv_layer_norm(ctx, x, model.ln_out_weight, model.ln_out_bias); // x = (self.w.head.weight @ x).float() ggml_build_forward_expand(cgraph, ggml_cpy(ctx, ggml_mul_mat(ctx, model.head, x), logits)); *post_logits_nodes = cgraph->n_nodes; *post_logits_leafs = cgraph->n_leafs; return true; } struct rwkv_future_tensor rwkv_future_sequence_graph(struct rwkv_future_ctx & ctx, const struct rwkv_future_tensor tokens, const size_t n_threads, const struct rwkv_future_tensor emb, const struct rwkv_future_tensor ln0_weight, const struct rwkv_future_tensor ln0_bias, const size_t n_layer, const struct rwkv_future_tensor ln1_weight, const struct rwkv_future_tensor ln1_bias, const struct rwkv_future_tensor att_time_mix_k, const struct rwkv_future_tensor att_time_mix_v, const struct rwkv_future_tensor att_time_mix_r, const struct rwkv_future_tensor att_time_first, const struct rwkv_future_tensor att_time_decay, const struct rwkv_future_tensor att_r, const struct rwkv_future_tensor att_k, const struct rwkv_future_tensor att_v, const struct rwkv_future_tensor att_output, struct rwkv_future_tensor & att_xx, struct rwkv_future_tensor & att_aa, struct rwkv_future_tensor & att_bb, struct rwkv_future_tensor & att_pp, const struct rwkv_future_tensor ln2_weight, const struct rwkv_future_tensor ln2_bias, const struct rwkv_future_tensor ffn_time_mix_k, const struct rwkv_future_tensor ffn_time_mix_r, const struct rwkv_future_tensor ffn_k, const struct rwkv_future_tensor ffn_v, const struct rwkv_future_tensor ffn_r, struct rwkv_future_tensor & ffn_xx, const struct rwkv_future_tensor ln_out_weight, const struct rwkv_future_tensor ln_out_bias, const struct rwkv_future_tensor head ) { struct rwkv_future_tensor x = emb.get_rows(ctx, tokens); x = x.layer_norm(ctx, ln0_weight.repeat(ctx, x), ln0_bias.repeat(ctx, x)); for (size_t i = 0; i < n_layer; i++) { struct rwkv_future_tensor x0 = x, x_prev; rwkv_future_carry_x(ctx, ln1_weight, ln1_bias, x0, x_prev, att_xx); struct rwkv_future_tensor r, k, v; rwkv_future_att_rkv(ctx, att_time_mix_k, att_time_mix_v, att_time_mix_r, x0, x_prev, att_r, att_k, att_v, r, k, v); for (size_t i = 0; i < tokens.width; i++) { struct rwkv_future_tensor kt = k.subview(ctx, emb.width); struct rwkv_future_tensor vt = v.subview(ctx, emb.width); struct rwkv_future_tensor xt = x_prev.subview(ctx, emb.width); struct rwkv_future_tensor wkv = rwkv_future_att_wkv(ctx, att_time_first, att_time_decay, att_aa, att_bb, att_pp, k, v); wkv.view(ctx); } x = x.consume(ctx, att_output.mul_mat(ctx, r.combine(ctx, x_prev))); x = x.consume(ctx, rwkv_future_ffn(ctx, ln2_weight, ln2_bias, ffn_time_mix_k, ffn_time_mix_r, ffn_k, ffn_v, ffn_r, x, ffn_xx)); ffn_xx.view(ctx); att_xx.view(ctx); att_aa.view(ctx); att_bb.view(ctx); att_pp.view(ctx); } x = x.subview(ctx, emb.width).layer_norm(ctx, ln_out_weight, ln_out_bias); rwkv_future_graph_work(ctx, ffn_k.type, ffn_k.height, n_threads, tokens.width); return head.mul_mat(ctx, x).view(ctx); } bool rwkv_build_sequence_graph( struct ggml_context * ctx, struct rwkv_model & model, struct ggml_tensor * tokens, struct rwkv_layer_state * inputs, struct rwkv_layer_state * outputs, struct ggml_tensor * logits, struct ggml_cgraph * cgraph, size_t * const pre_logits_nodes, size_t * const pre_logits_leafs, size_t * const post_logits_nodes, size_t * const post_logits_leafs ) { const uint32_t n_embed = model.header.n_embed; const size_t sequence_len = tokens->ne[0]; struct ggml_tensor * x = ggml_get_rows(ctx, model.emb, tokens); x = rwkv_layer_norm(ctx, x, ggml_repeat(ctx, model.ln0_weight, x), ggml_repeat(ctx, model.ln0_bias, x)); for (size_t i = 0; i < model.header.n_layer; i++) { struct rwkv_layer & layer = model.layers[i]; struct rwkv_layer_state state = inputs[i]; struct ggml_tensor * x0 = x, * x_prev; rwkv_carry_x(ctx, layer.ln1_weight, layer.ln1_bias, x0, x_prev, state.att_xx); struct ggml_tensor * r, * k, * v; rwkv_att_rkv(ctx, layer, x0, x_prev, r, k, v); ggml_build_forward_expand(cgraph, r); for (uint32_t t = 0; t < sequence_len; t++) { struct ggml_tensor * kt = ggml_view_1d(ctx, k, n_embed, n_embed * sizeof(float) * t); struct ggml_tensor * vt = ggml_view_1d(ctx, v, n_embed, n_embed * sizeof(float) * t); struct ggml_tensor * xt = ggml_view_1d(ctx, x_prev, n_embed, n_embed * sizeof(float) * t); struct ggml_tensor * wkv = rwkv_att_wkv(ctx, layer.att_time_first, layer.att_time_decay, kt, vt, state.att_aa, state.att_bb, state.att_pp); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, wkv, xt)); } x = ggml_add_inplace(ctx, x, ggml_mul_mat(ctx, layer.att_output, ggml_mul(ctx, r, x_prev))); x = ggml_add_inplace(ctx, x, rwkv_ffn(ctx, x, layer, state)); struct rwkv_layer_state & output = outputs[i]; ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.ffn_xx, output.ffn_xx)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_xx, output.att_xx)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_aa, output.att_aa)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_bb, output.att_bb)); ggml_build_forward_expand(cgraph, ggml_cpy(ctx, state.att_pp, output.att_pp)); } *pre_logits_nodes = cgraph->n_nodes; *pre_logits_leafs = cgraph->n_leafs; // x = self.layer_norm(x[-1,:], self.w.ln_out) x = rwkv_layer_norm(ctx, ggml_view_1d(ctx, x, n_embed, n_embed * sizeof(float) * (sequence_len - 1)), model.ln_out_weight, model.ln_out_bias); // x = (self.w.head.weight @ x).float() ggml_build_forward_expand(cgraph, ggml_cpy(ctx, ggml_mul_mat(ctx, model.head, x), logits)); *post_logits_nodes = cgraph->n_nodes; *post_logits_leafs = cgraph->n_leafs; return true; } void rwkv_set_print_errors(struct rwkv_context * ctx, bool print_errors) { bool * ptr = ctx ? &ctx->print_errors : &global_print_errors; *ptr = print_errors; } bool rwkv_get_print_errors(struct rwkv_context * ctx) { return ctx ? ctx->print_errors : global_print_errors; } enum rwkv_error_flags rwkv_get_last_error(struct rwkv_context * ctx) { enum rwkv_error_flags * ptr = ctx ? &ctx->last_error : &global_last_error; enum rwkv_error_flags value = *ptr; *ptr = RWKV_ERROR_NONE; return value; } struct rwkv_file { FILE * file; rwkv_file(FILE * file): file(file) {} ~rwkv_file() { if (file) { fclose(file); } } }; bool rwkv_instance_from_file(const char * file_path, struct rwkv_instance & instance) { struct stat file_stat; struct rwkv_model model; struct rwkv_ggml_context ctx; size_t ffn_key_size = 0; std::unordered_map parameters; { rwkv_file file(fopen(file_path, "rb")); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, file.file, "Failed to open file %s", file_path); // Be very careful when changing this code. It must support files larger than 2 GB by using 64-bit functions to get the file length. RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_STAT, fstat(fileno(file.file), &file_stat) == 0, "Failed to stat file %s", file_path); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE, rwkv_fread_file_header(file.file, model.header), "Invalid file header"); struct rwkv_tensor_header tensor_header; std::string name; struct rwkv_future_ctx future_ctx; while ((size_t) ftell(file.file) < (size_t) file_stat.st_size) { RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_tensor_header(file.file, tensor_header), "Invalid tensor header"); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_string(file.file, tensor_header.key_length, name), "Failed to read tensor name"); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_READ, fseek(file.file, tensor_header.size(), SEEK_CUR) == 0, "Failed to read tensor data"); future_ctx.alloc(rwkv_type_to_ggml[tensor_header.data_type], tensor_header.width, tensor_header.height); if (ffn_key_size == 0 && name == "blocks.0.ffn.key.weight") { ffn_key_size = tensor_header.height; } } RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_PARAM_MISSING, ffn_key_size, "Model is missing parameter blocks.0.ffn.key.weight"); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_READ, fseek(file.file, sizeof(struct rwkv_file_header), SEEK_SET) == 0, "Failed to seek in file"); ctx = future_ctx; RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, ctx.ctx, "Failed to allocate model context"); struct ggml_tensor * tensor; while ((size_t) ftell(file.file) < (size_t) file_stat.st_size) { RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_ggml_tensor(file.file, ctx.ctx, name, tensor), "Failed to read model params"); parameters[std::move(name)] = tensor; } } std::unordered_map & parameters_ref = parameters; RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_PARAM_MISSING, rwkv_set_params(model, [&](const char * key, struct ggml_tensor *& dest) { struct ggml_tensor * tensor = parameters_ref[key]; RWKV_ENSURE_OR_FALSE_MSG(tensor, "Model parameter %s not found", key); dest = tensor; return true; })); // Verify order of dimensions struct ggml_tensor * emb = model.emb; RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[0] == model.header.n_embed, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[0]); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[1] == model.header.n_vocab, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[1]); instance.ctx = std::move(ctx); instance.model = std::move(model); instance.ffn_key_size = ffn_key_size; return true; } struct rwkv_context * rwkv_new_context_impl(std::shared_ptr instance, const uint32_t n_threads) { global_last_error = RWKV_ERROR_NONE; struct rwkv_file_header & header = instance->model.header; const size_t n_vocab = header.n_vocab; const size_t n_embed = header.n_embed; const size_t n_layer = header.n_layer; struct rwkv_future_ctx future_ctx; const struct rwkv_future_tensor future_input = future_ctx.alloc(GGML_TYPE_F32, n_embed * 5 * n_layer); const struct rwkv_future_tensor future_output = future_ctx.alloc(GGML_TYPE_F32, n_embed * 5 * n_layer); const struct rwkv_future_tensor future_logits = future_ctx.alloc(GGML_TYPE_F32, n_vocab); for (size_t i = 0; i < n_layer; i++) { /* ffn_xx */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed); /* att_xx */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed); /* att_aa */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed); /* att_bb */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed); /* att_pp */ future_input.subview(future_ctx, n_embed); future_output.subview(future_ctx, n_embed); } struct rwkv_ggml_context ctx(future_ctx); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, ctx.ctx, "Failed to allocate model context"); struct ggml_tensor * input = ggml_new_tensor_1d(ctx.ctx, GGML_TYPE_F32, n_embed * 5 * n_layer); struct ggml_tensor * output = ggml_new_tensor_1d(ctx.ctx, GGML_TYPE_F32, n_embed * 5 * n_layer); // We collect parts of input state here. Each part is (n_embed) vector. std::unique_ptr inputs(new(std::nothrow) struct rwkv_layer_state[n_layer]); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, inputs.get(), "Failed to allocate input state parts"); // We collect parts of output state here. Each part is (n_embed) vector. std::unique_ptr outputs(new(std::nothrow) struct rwkv_layer_state[n_layer]); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, outputs.get(), "Failed to allocate output state parts"); for (size_t i = 0; i < n_layer; i++) { struct rwkv_layer_state & input_state = inputs[i]; input_state.ffn_xx = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 0) * sizeof(float)); input_state.att_xx = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 1) * sizeof(float)); input_state.att_aa = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 2) * sizeof(float)); input_state.att_bb = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 3) * sizeof(float)); input_state.att_pp = ggml_view_1d(ctx.ctx, input, n_embed, n_embed * (i * 5 + 4) * sizeof(float)); struct rwkv_layer_state & output_state = outputs[i]; output_state.ffn_xx = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 0) * sizeof(float)); output_state.att_xx = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 1) * sizeof(float)); output_state.att_aa = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 2) * sizeof(float)); output_state.att_bb = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 3) * sizeof(float)); output_state.att_pp = ggml_view_1d(ctx.ctx, output, n_embed, n_embed * (i * 5 + 4) * sizeof(float)); } struct ggml_tensor * logits = ggml_new_tensor_1d(ctx.ctx, GGML_TYPE_F32, n_vocab); struct rwkv_future_ctx graph_future_ctx; const struct rwkv_future_tensor future_token = graph_future_ctx.alloc(GGML_TYPE_I32, 1, 1, false); const struct rwkv_model & model = instance->model; const struct rwkv_layer & layer = model.layers[0]; const struct rwkv_layer_state & state = inputs[0]; struct rwkv_future_tensor ffn_xx = state.ffn_xx; struct rwkv_future_tensor att_xx = state.att_xx; struct rwkv_future_tensor att_aa = state.att_aa; struct rwkv_future_tensor att_bb = state.att_bb; struct rwkv_future_tensor att_pp = state.att_pp; const struct rwkv_future_tensor future_graph = rwkv_future_serial_graph(graph_future_ctx, future_token, n_threads, model.emb, model.ln0_weight, model.ln0_bias, n_layer, layer.ln1_weight, layer.ln1_bias, layer.att_time_mix_k, layer.att_time_mix_v, layer.att_time_mix_r, layer.att_time_first, layer.att_time_decay, layer.att_receptance, layer.att_key, layer.att_value, layer.att_output, att_xx, att_aa, att_bb, att_pp, layer.ln2_weight, layer.ln2_bias, layer.ffn_time_mix_k, layer.ffn_time_mix_r, layer.ffn_key, layer.ffn_value, layer.ffn_receptance, ffn_xx, model.ln_out_weight, model.ln_out_weight, model.head ); struct rwkv_graph serial_graph; serial_graph.ctx = graph_future_ctx; RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, serial_graph.ctx.ctx, "Failed to allocate serial graph context"); serial_graph.tokens = ggml_new_i32(serial_graph.ctx.ctx, 0); serial_graph.cgraph.reset(new(std::nothrow) struct ggml_cgraph()); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_ALLOC, serial_graph.cgraph, "Failed to allocate serial graph"); RWKV_ASSERT_NULL(RWKV_ERROR_GRAPH, rwkv_build_serial_graph( serial_graph.ctx.ctx, instance->model, serial_graph.tokens, inputs.get(), outputs.get(), logits, serial_graph.cgraph.get(), &serial_graph.pre_logits_nodes, &serial_graph.pre_logits_leafs, &serial_graph.post_logits_nodes, &serial_graph.post_logits_leafs )); std::unique_ptr rwkv_ctx(new(std::nothrow) struct rwkv_context()); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, rwkv_ctx, "Failed to allocate rwkv_context"); rwkv_ctx->instance = std::move(instance); rwkv_ctx->ctx = std::move(ctx); rwkv_ctx->input_state = input; rwkv_ctx->input_layers = std::move(inputs); rwkv_ctx->output_state = output; rwkv_ctx->output_layers = std::move(outputs); rwkv_ctx->logits = logits; rwkv_ctx->n_threads = n_threads; rwkv_ctx->serial_graph = std::move(serial_graph); rwkv_ctx->last_error = RWKV_ERROR_NONE; rwkv_ctx->print_errors = global_print_errors; return rwkv_ctx.release(); } struct rwkv_context * rwkv_init_from_file(const char * file_path, const uint32_t n_threads) { global_last_error = RWKV_ERROR_NONE; std::shared_ptr instance(new(std::nothrow) struct rwkv_instance()); RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, instance, "Failed to allocate instance"); RWKV_ENSURE_OR_NULL(rwkv_instance_from_file(file_path, *instance.get())); return rwkv_new_context_impl(instance, n_threads); } struct rwkv_context * rwkv_clone_context(struct rwkv_context * ctx, const uint32_t n_threads) { struct rwkv_context * clone = rwkv_new_context_impl(ctx->instance, n_threads); if (clone) { clone->print_errors = ctx->print_errors; } return clone; } bool rwkv_gpu_offload_layers(struct rwkv_context * ctx, const uint32_t n_layers) { #if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS) printf("\nOffloading %u (or fewer) layers...",n_layers); const auto offload = [&](struct ggml_tensor * tensor) { // TODO support multi-GPU tensor->backend = GGML_BACKEND_GPU; #if defined(GGML_USE_CLBLAST) ggml_cl_transform_tensor(tensor->data, tensor); #else ggml_cuda_transform_tensor(tensor->data, tensor); #endif }; const size_t n_gpu = std::min(n_layers, ctx->instance->model.header.n_layer); if (ctx->gpu_layers < n_gpu) { for (size_t & i = ctx->gpu_layers; i < n_gpu; i++) { const struct rwkv_layer & layer = ctx->instance->model.layers[i]; // TODO also offload other operations to GPU with ggml_cuda_assign_buffers offload(layer.att_key); offload(layer.att_value); offload(layer.att_receptance); offload(layer.att_output); offload(layer.ffn_key); offload(layer.ffn_value); offload(layer.ffn_receptance); } return true; } #endif return false; } void rwkv_set_inputs(const struct rwkv_context * ctx, const float * state_in) { if (state_in) { memcpy(ctx->input_state->data, state_in, rwkv_nbytes_old(ctx->input_state)); } else { rwkv_init_state(ctx, (float *) ctx->input_state->data); } } void rwkv_get_outputs(const struct rwkv_context * ctx, float * state_out, float * logits_out) { if (state_out) { memcpy(state_out, ctx->output_state->data, rwkv_nbytes_old(ctx->output_state)); } if (logits_out) { memcpy(logits_out, ctx->logits->data, rwkv_nbytes_old(ctx->logits)); } } bool rwkv_eval(struct rwkv_context * ctx, const int n_threads, const uint32_t token, const float * state_in, float * state_out, float * logits_out) { ctx->last_error = RWKV_ERROR_NONE; const struct rwkv_file_header & header = ctx->instance->model.header; const size_t n_vocab = header.n_vocab; RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, token < n_vocab, "Token (%" PRId32 ") is out of range (0 .. %zu)", token, n_vocab - 1); rwkv_set_inputs(ctx, state_in); ggml_set_i32(ctx->serial_graph.tokens, token); // Short circuit computation of logits if nobody actually cares if (!logits_out) { ctx->serial_graph.cgraph->n_nodes = ctx->serial_graph.pre_logits_nodes; ctx->serial_graph.cgraph->n_leafs = ctx->serial_graph.pre_logits_leafs; } else { ctx->serial_graph.cgraph->n_nodes = ctx->serial_graph.post_logits_nodes; ctx->serial_graph.cgraph->n_leafs = ctx->serial_graph.post_logits_leafs; } kcpp_graph_compute_helper(ctx->serial_graph.cgraph.get(),n_threads); rwkv_get_outputs(ctx, state_out, logits_out); return true; } bool rwkv_eval_sequence(struct rwkv_context * ctx, const int n_threads, const uint32_t * sequence, const size_t sequence_len, const float * state_in, float * state_out, float * logits_out) { ctx->last_error = RWKV_ERROR_NONE; const struct rwkv_file_header & header = ctx->instance->model.header; const size_t n_vocab = header.n_vocab; const size_t n_embed = header.n_embed; const size_t n_layer = header.n_layer; if (sequence) { for (size_t i = 0; i < sequence_len; i++) { const uint32_t token = sequence[i]; RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, token < n_vocab, "Token at index %zu (%" PRId32 ") is out of range (0 .. %zu)", i, token, n_vocab - 1); } } if (ctx->sequence_len != sequence_len) { // Build new sequence graph struct rwkv_future_ctx graph_future_ctx; const struct rwkv_future_tensor future_tokens = graph_future_ctx.alloc(GGML_TYPE_I32, sequence_len); const struct rwkv_model & model = ctx->instance->model; const struct rwkv_layer & layer = model.layers[0]; const struct rwkv_layer_state & state = ctx->input_layers[0]; struct rwkv_future_tensor ffn_xx = state.ffn_xx; struct rwkv_future_tensor att_xx = state.att_xx; struct rwkv_future_tensor att_aa = state.att_aa; struct rwkv_future_tensor att_bb = state.att_bb; struct rwkv_future_tensor att_pp = state.att_pp; const struct rwkv_future_tensor future_graph = rwkv_future_sequence_graph(graph_future_ctx, future_tokens, 1, model.emb, model.ln0_weight, model.ln0_bias, n_layer, layer.ln1_weight, layer.ln1_bias, layer.att_time_mix_k, layer.att_time_mix_v, layer.att_time_mix_r, layer.att_time_first, layer.att_time_decay, layer.att_receptance, layer.att_key, layer.att_value, layer.att_output, att_xx, att_aa, att_bb, att_pp, layer.ln2_weight, layer.ln2_bias, layer.ffn_time_mix_k, layer.ffn_time_mix_r, layer.ffn_key, layer.ffn_value, layer.ffn_receptance, ffn_xx, model.ln_out_weight, model.ln_out_weight, model.head ); struct rwkv_graph sequence_graph; sequence_graph.ctx = graph_future_ctx; RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, sequence_graph.ctx.ctx, "Failed to allocate sequence graph context"); sequence_graph.tokens = ggml_new_tensor_1d(sequence_graph.ctx.ctx, GGML_TYPE_I32, sequence_len); sequence_graph.cgraph.reset(new(std::nothrow) struct ggml_cgraph()); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, sequence_graph.cgraph, "Failed to allocate sequence graph"); RWKV_ASSERT_FALSE(RWKV_ERROR_GRAPH, rwkv_build_sequence_graph( sequence_graph.ctx.ctx, ctx->instance->model, sequence_graph.tokens, ctx->input_layers.get(), ctx->output_layers.get(), ctx->logits, sequence_graph.cgraph.get(), &sequence_graph.pre_logits_nodes, &sequence_graph.pre_logits_leafs, &sequence_graph.post_logits_nodes, &sequence_graph.post_logits_leafs )); ctx->sequence_len = sequence_len; ctx->sequence_graph = std::move(sequence_graph); } // Allow building the sequence graph without actually evaluating, by specifying sequence = NULL. if (sequence) { rwkv_set_inputs(ctx, state_in); memcpy(ctx->sequence_graph.tokens->data, sequence, sequence_len * sizeof(uint32_t)); // Short circuit computation of logits if nobody actually cares if (!logits_out) { ctx->sequence_graph.cgraph->n_nodes = ctx->sequence_graph.pre_logits_nodes; ctx->sequence_graph.cgraph->n_leafs = ctx->sequence_graph.pre_logits_leafs; } else { ctx->sequence_graph.cgraph->n_nodes = ctx->sequence_graph.post_logits_nodes; ctx->sequence_graph.cgraph->n_leafs = ctx->sequence_graph.post_logits_leafs; } kcpp_graph_compute_helper(ctx->sequence_graph.cgraph.get(),n_threads); rwkv_get_outputs(ctx, state_out, logits_out); } return true; } // Provided for compatibility. extern "C" RWKV_API uint32_t rwkv_get_state_buffer_element_count(const struct rwkv_context * ctx) { return rwkv_get_state_len(ctx); } // Provided for compatibility. extern "C" RWKV_API uint32_t rwkv_get_logits_buffer_element_count(const struct rwkv_context * ctx) { return rwkv_get_logits_len(ctx); } size_t rwkv_get_n_vocab(const struct rwkv_context * ctx) { return (size_t) ctx->instance->model.header.n_vocab; } size_t rwkv_get_n_embed(const struct rwkv_context * ctx) { return (size_t) ctx->instance->model.header.n_embed; } size_t rwkv_get_n_layer(const struct rwkv_context * ctx) { return (size_t) ctx->instance->model.header.n_layer; } size_t rwkv_get_state_len(const struct rwkv_context * ctx) { const struct rwkv_file_header & header = ctx->instance->model.header; return (size_t) header.n_embed * 5 * (size_t) header.n_layer; } size_t rwkv_get_logits_len(const struct rwkv_context * ctx) { return (size_t) ctx->instance->model.header.n_vocab; } void rwkv_init_state(const struct rwkv_context * ctx, float * state) { const struct rwkv_file_header & header = ctx->instance->model.header; const size_t layer_size = (size_t) header.n_embed * 5; const size_t layer_zero = (size_t) header.n_embed * 4; const size_t layers_size = (size_t) header.n_layer * layer_size; for (size_t start = 0; start < layers_size; start += layer_size) { for (size_t i = 0; i < layer_zero; i++) { state[start + i] = 0.0F; } for (size_t i = layer_zero; i < layer_size; i++) { state[start + i] = -1e30F; } } } void rwkv_free(struct rwkv_context * ctx) { std::unique_ptr rwkv_ctx(ctx); } bool rwkv_quantize_model_file(const char * in_path, const char * out_path, const char * type_name) { global_last_error = RWKV_ERROR_NONE; enum ggml_type out_type = rwkv_type_to_ggml[rwkv_type_from_string(type_name)]; RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ARGS | RWKV_ERROR_DATA_TYPE, ggml_is_quantized(out_type), "Unsupported output data type (%s)", rwkv_type_to_string[rwkv_type_from_ggml[out_type]]); RWKV_MSG("Loading model from '%s'\n", in_path); struct stat in_stat; struct rwkv_file in_file(fopen(in_path, "rb")); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, in_file.file, "Failed to open %s for reading", in_path); // Be very careful when changing this code. It must support files larger than 2 GB by using 64-bit functions to the get file length. RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_STAT, fstat(fileno(in_file.file), &in_stat) == 0, "failed to stat file %s", in_path); struct rwkv_file out_file(fopen(out_path, "wb")); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, out_file.file, "Failed to open %s for writing", out_path); struct rwkv_file_header in_header; RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE, rwkv_fread_file_header(in_file.file, in_header), "Invalid file header"); enum ggml_type in_type = rwkv_type_to_ggml[in_header.data_type]; RWKV_ASSERT_FALSE_MSG( RWKV_ERROR_FILE, in_type == GGML_TYPE_F32 || in_type == GGML_TYPE_F16, "Unsupported input data type (%s); needs to be FP32 or FP16", rwkv_type_to_string[rwkv_type_from_ggml[in_type]] ); struct rwkv_file_header out_header = in_header; out_header.version = RWKV_FILE_VERSION; out_header.data_type = rwkv_type_from_ggml[out_type]; RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE, rwkv_fwrite_file_header(out_file.file, out_header), "Failed to write file header"); // Process parameters size_t orig_total_size = 0; size_t new_total_size = 0; // Required to init the F16 tables // Doesn't crash if ggml_init fails ggml_free(ggml_init({ 0, NULL, true })); size_t max_in_size = 0; size_t max_out_size = 0; size_t max_key_length = 0; while (ftell(in_file.file) < in_stat.st_size) { struct rwkv_tensor_header header; RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, rwkv_fread_tensor_header_and_skip(in_file.file, header)); size_t in_size = header.size(); if (in_size > max_in_size) { max_in_size = in_size; } // f16 type tensors get relocated to out and then converted into f32 at in if (header.data_type == TYPE_FP16) { if (in_size > max_out_size) { max_out_size = in_size; } size_t f32_size = rwkv_future_tensor::size(GGML_TYPE_F32, header.width, header.height); if (f32_size > max_in_size) { max_in_size = f32_size; } } size_t out_size = rwkv_future_tensor::size(out_type, header.width, header.height); if (out_size > max_out_size) { max_out_size = out_size; } if (header.key_length > max_key_length) { max_key_length = header.key_length; } } RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_READ, fseek(in_file.file, sizeof(struct rwkv_file_header), SEEK_SET) == 0, "Failed to seek in file"); // This is a histogram of quantized values. If it shows single 1.0, then all 0.0, something went very wrong! int64_t hist_all[16] {}; std::unique_ptr scratch(new(std::nothrow) uint8_t[max_in_size + max_out_size]); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, scratch.get(), "Failed to allocate buffer"); uint8_t * in_buf = scratch.get(); uint8_t * out_buf = in_buf + max_in_size; struct rwkv_tensor tensor; struct rwkv_tensor_header & header = tensor.header; std::string & name = tensor.name; uint8_t *& data = tensor.data; while (ftell(in_file.file) < in_stat.st_size) { RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_tensor_header(in_file.file, header), "Failed to read tensor header"); RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_string(in_file.file, header.key_length, name), "Failed to read tensor name"); const char * name_str = name.c_str(); RWKV_MSG("%*s - [%5" PRId32 ", %5" PRId32 "], type = %6s ", (int) max_key_length, name_str, header.width, header.height, rwkv_type_to_string[header.data_type]); data = header.data_type == TYPE_FP16 ? out_buf : in_buf; size_t orig_size = header.size(), new_size = orig_size; RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS, rwkv_fread_data(in_file.file, orig_size, data), "\nFailed to read tensor data of %s", name_str); // Quantize only 2D tensors, except embedding and head matrices. // Embedding and head take not too much space, especially in bigger models; // but they significantly increase perplexity when quantized. if ((header.data_type == TYPE_FP32 || header.data_type == TYPE_FP16) && header.dim_count == 2 && name != "emb.weight" && name != "head.weight") { RWKV_MSG("quantizing... "); size_t nelements = (size_t) header.width * (size_t) header.height; if (header.data_type == TYPE_FP16) { ggml_fp16_to_fp32_row((const ggml_fp16_t *) out_buf, (float *) in_buf, nelements); } int64_t hist_cur[16] {}; new_size = ggml_quantize_chunk(out_type, (const float *) in_buf, out_buf, 0, nelements, hist_cur); header.data_type = rwkv_type_from_ggml[out_type]; data = out_buf; RWKV_MSG("size = %8.2f MB -> %8.2f MB | hist: ", orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); for (int i = 0; i < 16; i++) { RWKV_MSG("%5.3f ", hist_cur[i] / (float) nelements); hist_all[i] += hist_cur[i]; } RWKV_MSG("\n"); } else { RWKV_MSG("size = %8.3f MB\n", orig_size / 1024.0 / 1024.0); } RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_WRITE, rwkv_fwrite_tensor(out_file.file, tensor), "Failed to write tensor %s", name_str); orig_total_size += orig_size; new_total_size += new_size; } RWKV_MSG("original size = %8.2f MB\n", orig_total_size / 1024.0 / 1024.0); RWKV_MSG("quantized size = %8.2f MB\n", new_total_size / 1024.0 / 1024.0); RWKV_MSG("compression ratio = %8.2f\n", orig_total_size / float(new_total_size)); int64_t sum_all = 0; for (int i = 0; i < 16; i++) { sum_all += hist_all[i]; } RWKV_MSG("hist: "); for (int i = 0; i < 16; ++i) { printf("%5.3f ", hist_all[i] / float(sum_all)); } RWKV_MSG("\n"); return true; } const char * rwkv_get_system_info_string(void) { static std::string s; s = ""; s += "AVX=" + std::to_string(ggml_cpu_has_avx()) + " "; s += "AVX2=" + std::to_string(ggml_cpu_has_avx2()) + " "; s += "AVX512=" + std::to_string(ggml_cpu_has_avx512()) + " "; s += "FMA=" + std::to_string(ggml_cpu_has_fma()) + " "; s += "NEON=" + std::to_string(ggml_cpu_has_neon()) + " "; s += "ARM_FMA=" + std::to_string(ggml_cpu_has_arm_fma()) + " "; s += "F16C=" + std::to_string(ggml_cpu_has_f16c()) + " "; s += "FP16_VA=" + std::to_string(ggml_cpu_has_fp16_va()) + " "; s += "WASM_SIMD=" + std::to_string(ggml_cpu_has_wasm_simd()) + " "; s += "BLAS=" + std::to_string(ggml_cpu_has_blas()) + " "; s += "SSE3=" + std::to_string(ggml_cpu_has_sse3()) + " "; s += "VSX=" + std::to_string(ggml_cpu_has_vsx()); return s.c_str(); }