Illumotion commited on
Commit
60d304c
1 Parent(s): 3b01bdb

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +84 -7
  2. gpttype_adapter.cpp +5 -1
  3. koboldcpp.py +11 -7
README.md CHANGED
@@ -1,7 +1,84 @@
1
- ---
2
- title: Koboldcpp
3
- sdk: docker
4
- emoji: 🚀
5
- colorFrom: blue
6
- colorTo: blue
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # koboldcpp
2
+
3
+ KoboldCpp is an easy-to-use AI text-generation software for GGML models. It's a single self contained distributable from Concedo, that builds off llama.cpp, and adds a versatile Kobold API endpoint, additional format support, backward compatibility, as well as a fancy UI with persistent stories, editing tools, save formats, memory, world info, author's note, characters, scenarios and everything Kobold and Kobold Lite have to offer.
4
+
5
+ ![Preview](media/preview.png)
6
+
7
+ ## Usage
8
+ - **[Download the latest .exe release here](https://github.com/LostRuins/koboldcpp/releases/latest)** or clone the git repo.
9
+ - Windows binaries are provided in the form of **koboldcpp.exe**, which is a pyinstaller wrapper for a few **.dll** files and **koboldcpp.py**. If you feel concerned, you may prefer to rebuild it yourself with the provided makefiles and scripts.
10
+ - Weights are not included, you can use the official llama.cpp `quantize.exe` to generate them from your official weight files (or download them from other places such as [TheBloke's Huggingface](https://huggingface.co/TheBloke).
11
+ - To run, execute **koboldcpp.exe** or drag and drop your quantized `ggml_model.bin` file onto the .exe, and then connect with Kobold or Kobold Lite. If you're not on windows, then run the script **KoboldCpp.py** after compiling the libraries.
12
+ - Launching with no command line arguments displays a GUI containing a subset of configurable settings. Generally you dont have to change much besides the `Presets` and `GPU Layers`. Read the `--help` for more info about each settings.
13
+ - By default, you can connect to http://localhost:5001
14
+ - You can also run it using the command line `koboldcpp.exe [ggml_model.bin] [port]`. For info, please check `koboldcpp.exe --help`
15
+ - Default context size to small? Try `--contextsize 3072` to 1.5x your context size! without much perplexity gain. Note that you'll have to increase the max context in the Kobold Lite UI as well (click and edit the number text field).
16
+ - Big context too slow? Try the `--smartcontext` flag to reduce prompt processing frequency. Also, you can try to run with your GPU using CLBlast, with `--useclblast` flag for a speedup
17
+ - Want even more speedup? Combine `--useclblast` with `--gpulayers` to offload entire layers to the GPU! **Much faster, but uses more VRAM**. Experiment to determine number of layers to offload, and reduce by a few if you run out of memory.
18
+ - If you are having crashes or issues, you can try turning off BLAS with the `--noblas` flag. You can also try running in a non-avx2 compatibility mode with `--noavx2`. Lastly, you can try turning off mmap with `--nommap`.
19
+
20
+ For more information, be sure to run the program with the `--help` flag.
21
+
22
+ ## OSX and Linux
23
+ - You will have to compile your binaries from source. A makefile is provided, simply run `make`
24
+ - If you want you can also link your own install of OpenBLAS manually with `make LLAMA_OPENBLAS=1`
25
+ - Alternatively, if you want you can also link your own install of CLBlast manually with `make LLAMA_CLBLAST=1`, for this you will need to obtain and link OpenCL and CLBlast libraries.
26
+ - For Arch Linux: Install `cblas` `openblas` and `clblast`.
27
+ - For Debian: Install `libclblast-dev` and `libopenblas-dev`.
28
+ - For a full featured build, do `make LLAMA_OPENBLAS=1 LLAMA_CLBLAST=1 LLAMA_CUBLAS=1`
29
+ - After all binaries are built, you can run the python script with the command `koboldcpp.py [ggml_model.bin] [port]`
30
+ - Note: Many OSX users have found that the using Accelerate is actually faster than OpenBLAS. To try, you may wish to run with `--noblas` and compare speeds.
31
+
32
+ ## Compiling on Windows
33
+ - You're encouraged to use the .exe released, but if you want to compile your binaries from source at Windows, the easiest way is:
34
+ - Use the latest release of w64devkit (https://github.com/skeeto/w64devkit). Be sure to use the "vanilla one", not i686 or other different stuff. If you try they will conflit with the precompiled libs!
35
+ - Make sure you are using the w64devkit integrated terminal, then run 'make' at the KoboldCpp source folder. This will create the .dll files.
36
+ - If you want to generate the .exe file, make sure you have the python module PyInstaller installed with pip ('pip install PyInstaller').
37
+ - Run the script make_pyinstaller.bat at a regular terminal (or Windows Explorer).
38
+ - The koboldcpp.exe file will be at your dist folder.
39
+ - If you wish to use your own version of the additional Windows libraries (OpenCL, CLBlast and OpenBLAS), you can do it with:
40
+ - OpenCL - tested with https://github.com/KhronosGroup/OpenCL-SDK . If you wish to compile it, follow the repository instructions. You will need vcpkg.
41
+ - CLBlast - tested with https://github.com/CNugteren/CLBlast . If you wish to compile it you will need to reference the OpenCL files. It will only generate the ".lib" file if you compile using MSVC.
42
+ - OpenBLAS - tested with https://github.com/xianyi/OpenBLAS .
43
+ - Move the respectives .lib files to the /lib folder of your project, overwriting the older files.
44
+ - Also, replace the existing versions of the corresponding .dll files located in the project directory root (e.g. libopenblas.dll).
45
+ - Make the KoboldCPP project using the instructions above.
46
+
47
+ ## Android (Termux) Alternative method
48
+ - See https://github.com/ggerganov/llama.cpp/pull/1828/files
49
+
50
+ ## Using CuBLAS
51
+ - If you're on Windows with an Nvidia GPU you can get CUDA support out of the box using the `--usecublas` flag, make sure you select the correct .exe with CUDA support.
52
+ - You can attempt a CuBLAS build with `LLAMA_CUBLAS=1` or using the provided CMake file (best for visual studio users). If you use the CMake file to build, copy the `koboldcpp_cublas.dll` generated into the same directory as the `koboldcpp.py` file. If you are bundling executables, you may need to include CUDA dynamic libraries (such as `cublasLt64_11.dll` and `cublas64_11.dll`) in order for the executable to work correctly on a different PC.
53
+
54
+ ## AMD
55
+ - Please check out https://github.com/YellowRoseCx/koboldcpp-rocm
56
+
57
+ ## Questions and Help
58
+ - **First, please check out [The KoboldCpp FAQ and Knowledgebase](https://github.com/LostRuins/koboldcpp/wiki) which may already have answers to your questions! Also please search through past issues and discussions.**
59
+ - If you cannot find an answer, open an issue on this github, or find us on the [KoboldAI Discord](https://koboldai.org/discord).
60
+
61
+ ## Considerations
62
+ - For Windows: No installation, single file executable, (It Just Works)
63
+ - Since v1.0.6, requires libopenblas, the prebuilt windows binaries are included in this repo. If not found, it will fall back to a mode without BLAS.
64
+ - Since v1.15, requires CLBlast if enabled, the prebuilt windows binaries are included in this repo. If not found, it will fall back to a mode without CLBlast.
65
+ - Since v1.33, you can set the context size to be above what the model supports officially. It does increases perplexity but should still work well below 4096 even on untuned models. (For GPT-NeoX, GPT-J, and LLAMA models) Customize this with `--ropeconfig`.
66
+ - **I plan to keep backwards compatibility with ALL past llama.cpp AND alpaca.cpp models**. But you are also encouraged to reconvert/update your models if possible for best results.
67
+
68
+ ## License
69
+ - The original GGML library and llama.cpp by ggerganov are licensed under the MIT License
70
+ - However, Kobold Lite is licensed under the AGPL v3.0 License
71
+ - The other files are also under the AGPL v3.0 License unless otherwise stated
72
+
73
+ ## Notes
74
+ - Generation delay scales linearly with original prompt length. If OpenBLAS is enabled then prompt ingestion becomes about 2-3x faster. This is automatic on windows, but will require linking on OSX and Linux. CLBlast speeds this up even further, and `--gpulayers` + `--useclblast` or `--usecublas` more so.
75
+ - I have heard of someone claiming a false AV positive report. The exe is a simple pyinstaller bundle that includes the necessary python scripts and dlls to run. If this still concerns you, you might wish to rebuild everything from source code using the makefile, and you can rebuild the exe yourself with pyinstaller by using `make_pyinstaller.bat`
76
+ - Supported GGML models (Includes backward compatibility for older versions/legacy GGML models, though some newer features might be unavailable):
77
+ - LLAMA and LLAMA2 (LLaMA / Alpaca / GPT4All / Vicuna / Koala / Pygmalion 7B / Metharme 7B / WizardLM and many more)
78
+ - GPT-2 / Cerebras
79
+ - GPT-J
80
+ - RWKV
81
+ - GPT-NeoX / Pythia / StableLM / Dolly / RedPajama
82
+ - MPT models
83
+ - Falcon (GGUF only)
84
+
gpttype_adapter.cpp CHANGED
@@ -788,6 +788,8 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
788
  llama_ctx_params.rope_freq_base = rope_freq_base;
789
  llama_ctx_params.rope_freq_scale = rope_freq_scale;
790
  llama_ctx_params.n_batch = blasbatchsize;
 
 
791
 
792
  #if defined(GGML_USE_CUBLAS)
793
  bool ts_all_zero = true;
@@ -1365,7 +1367,9 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
1365
  params.n_batch = bbs; //received reports of 1024 and above crashing on some models
1366
  if(!ggml_cpu_has_gpublas())
1367
  {
1368
- params.n_threads = 1; //do not limit here anymore.
 
 
1369
  params.n_threads_batch = 1;
1370
  }
1371
  else
 
788
  llama_ctx_params.rope_freq_base = rope_freq_base;
789
  llama_ctx_params.rope_freq_scale = rope_freq_scale;
790
  llama_ctx_params.n_batch = blasbatchsize;
791
+ llama_ctx_params.n_threads = n_threads;
792
+ llama_ctx_params.n_threads_batch = n_blasthreads;
793
 
794
  #if defined(GGML_USE_CUBLAS)
795
  bool ts_all_zero = true;
 
1367
  params.n_batch = bbs; //received reports of 1024 and above crashing on some models
1368
  if(!ggml_cpu_has_gpublas())
1369
  {
1370
+ //does not limit here for gguf anymore. this is kept for older models.
1371
+ //new models will override threads inside decode fn.
1372
+ params.n_threads = 1;
1373
  params.n_threads_batch = 1;
1374
  }
1375
  else
koboldcpp.py CHANGED
@@ -367,7 +367,7 @@ maxhordelen = 256
367
  modelbusy = threading.Lock()
368
  requestsinqueue = 0
369
  defaultport = 5001
370
- KcppVersion = "1.45.1"
371
  showdebug = True
372
  showsamplerwarning = True
373
  showmaxctxwarning = True
@@ -526,6 +526,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
526
  global maxctx, maxhordelen, friendlymodelname, KcppVersion, totalgens
527
  self.path = self.path.rstrip('/')
528
  response_body = None
 
529
 
530
  if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without /
531
  if args.stream and not "streaming=1" in self.path:
@@ -583,8 +584,9 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
583
  pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
584
  response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
585
 
586
- elif self.path.endswith('/api/extra/oai/v1/models'):
587
  response_body = (json.dumps({"object":"list","data":[{"id":"koboldcpp","object":"model","created":1,"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode())
 
588
 
589
  elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')):
590
  response_body = (json.dumps({"result":"KoboldCpp partial API reference can be found at https://link.concedo.workers.dev/koboldapi"}).encode())
@@ -598,7 +600,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
598
  else:
599
  self.send_response(200)
600
  self.send_header('Content-Length', str(len(response_body)))
601
- self.end_headers()
602
  self.wfile.write(response_body)
603
  return
604
 
@@ -607,6 +609,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
607
  content_length = int(self.headers['Content-Length'])
608
  body = self.rfile.read(content_length)
609
  self.path = self.path.rstrip('/')
 
610
 
611
  if self.path.endswith(('/api/extra/tokencount')):
612
  try:
@@ -684,8 +687,9 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
684
  api_format = 2
685
  kai_sse_stream_flag = True
686
 
687
- if self.path.endswith('/api/extra/oai/v1/completions'):
688
  api_format = 3
 
689
 
690
  if api_format>0:
691
  genparams = None
@@ -707,7 +711,7 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
707
  # Headers are already sent when streaming
708
  if not kai_sse_stream_flag:
709
  self.send_response(200)
710
- self.end_headers()
711
  self.wfile.write(json.dumps(gen).encode())
712
  except:
713
  print("Generate: The response could not be sent, maybe connection was terminated?")
@@ -728,11 +732,11 @@ class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
728
  self.send_response(200)
729
  self.end_headers()
730
 
731
- def end_headers(self):
732
  self.send_header('Access-Control-Allow-Origin', '*')
733
  self.send_header('Access-Control-Allow-Methods', '*')
734
  self.send_header('Access-Control-Allow-Headers', '*')
735
- if "/api" in self.path:
736
  if self.path.endswith("/stream"):
737
  self.send_header('Content-type', 'text/event-stream')
738
  self.send_header('Content-type', 'application/json')
 
367
  modelbusy = threading.Lock()
368
  requestsinqueue = 0
369
  defaultport = 5001
370
+ KcppVersion = "1.45.2"
371
  showdebug = True
372
  showsamplerwarning = True
373
  showmaxctxwarning = True
 
526
  global maxctx, maxhordelen, friendlymodelname, KcppVersion, totalgens
527
  self.path = self.path.rstrip('/')
528
  response_body = None
529
+ force_json = False
530
 
531
  if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without /
532
  if args.stream and not "streaming=1" in self.path:
 
584
  pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
585
  response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
586
 
587
+ elif self.path.endswith('/v1/models') or self.path.endswith('/models'):
588
  response_body = (json.dumps({"object":"list","data":[{"id":"koboldcpp","object":"model","created":1,"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode())
589
+ force_json = True
590
 
591
  elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')):
592
  response_body = (json.dumps({"result":"KoboldCpp partial API reference can be found at https://link.concedo.workers.dev/koboldapi"}).encode())
 
600
  else:
601
  self.send_response(200)
602
  self.send_header('Content-Length', str(len(response_body)))
603
+ self.end_headers(force_json=force_json)
604
  self.wfile.write(response_body)
605
  return
606
 
 
609
  content_length = int(self.headers['Content-Length'])
610
  body = self.rfile.read(content_length)
611
  self.path = self.path.rstrip('/')
612
+ force_json = False
613
 
614
  if self.path.endswith(('/api/extra/tokencount')):
615
  try:
 
687
  api_format = 2
688
  kai_sse_stream_flag = True
689
 
690
+ if self.path.endswith('/v1/completions') or self.path.endswith('/completions'):
691
  api_format = 3
692
+ force_json = True
693
 
694
  if api_format>0:
695
  genparams = None
 
711
  # Headers are already sent when streaming
712
  if not kai_sse_stream_flag:
713
  self.send_response(200)
714
+ self.end_headers(force_json=force_json)
715
  self.wfile.write(json.dumps(gen).encode())
716
  except:
717
  print("Generate: The response could not be sent, maybe connection was terminated?")
 
732
  self.send_response(200)
733
  self.end_headers()
734
 
735
+ def end_headers(self, force_json=False):
736
  self.send_header('Access-Control-Allow-Origin', '*')
737
  self.send_header('Access-Control-Allow-Methods', '*')
738
  self.send_header('Access-Control-Allow-Headers', '*')
739
+ if "/api" in self.path or force_json:
740
  if self.path.endswith("/stream"):
741
  self.send_header('Content-type', 'text/event-stream')
742
  self.send_header('Content-type', 'application/json')