Spaces:
Build error
Build error
// load the model's weights from a file | |
ModelLoadResult gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt_vocab & vocab, FileFormat file_format, int gpulayers) { | |
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); | |
auto fin = std::ifstream(fname, std::ios::binary); | |
if (!fin) { | |
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); | |
return ModelLoadResult::FAIL; | |
} | |
// verify magic | |
{ | |
uint32_t magic; | |
fin.read((char *) &magic, sizeof(magic)); | |
if (magic != 0x67676d6c) { | |
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); | |
return ModelLoadResult::FAIL; | |
} | |
} | |
int32_t origmaxctx = model.hparams.n_ctx; | |
// load hparams | |
{ | |
auto & hparams = model.hparams; | |
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); | |
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); | |
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); | |
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); | |
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); | |
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); | |
fin.read((char *) &hparams.par_res, sizeof(hparams.par_res)); | |
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); | |
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; | |
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); | |
printf("%s: n_ctx = %d (%d)\n", __func__, hparams.n_ctx,origmaxctx); | |
printf("%s: n_embd = %d\n", __func__, hparams.n_embd); | |
printf("%s: n_head = %d\n", __func__, hparams.n_head); | |
printf("%s: n_layer = %d\n", __func__, hparams.n_layer); | |
printf("%s: n_rot = %d\n", __func__, hparams.n_rot); | |
printf("%s: par_res = %d\n", __func__, hparams.par_res); | |
printf("%s: ftype = %d\n", __func__, hparams.ftype); | |
printf("%s: qntvr = %d\n", __func__, qntvr); | |
hparams.n_ctx = std::max(origmaxctx,hparams.n_ctx); | |
hparams.ftype %= GGML_QNT_VERSION_FACTOR; | |
} | |
// load vocab | |
{ | |
const int32_t n_vocab = model.hparams.n_vocab; | |
std::string word; | |
std::vector<char> buf(128); | |
for (int i = 0; i < n_vocab; i++) { | |
uint32_t len; | |
fin.read((char *) &len, sizeof(len)); | |
buf.resize(len); | |
fin.read((char *) buf.data(), len); | |
word.assign(buf.data(), len); | |
vocab.token_to_id[word] = i; | |
vocab.id_to_token[i] = word; | |
} | |
} | |
// for the big tensors, we have the option to store the data in 16-bit floats or quantized | |
// in order to save memory and also to speed up the computation | |
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); | |
if (wtype == GGML_TYPE_COUNT) { | |
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", | |
__func__, fname.c_str(), model.hparams.ftype); | |
return ModelLoadResult::FAIL; | |
} | |
auto & ctx = model.ctx; | |
size_t ctx_size = 0; | |
{ | |
const auto & hparams = model.hparams; | |
const size_t n_embd = hparams.n_embd; | |
const size_t n_layer = hparams.n_layer; | |
const size_t n_ctx = hparams.n_ctx; | |
const size_t n_vocab = hparams.n_vocab; | |
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g | |
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b | |
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte | |
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g | |
//ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b | |
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g | |
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b | |
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w | |
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b | |
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w | |
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b | |
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g | |
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b | |
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w | |
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b | |
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w | |
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b | |
ctx_size += std::max((size_t)origmaxctx,n_ctx)*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k | |
ctx_size += std::max((size_t)origmaxctx,n_ctx)*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v | |
ctx_size += (6 + 16*n_layer)*1024; // object overhead | |
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); | |
} | |
// create the ggml context | |
{ | |
struct ggml_init_params params; | |
params.mem_size = ctx_size; | |
params.mem_buffer = NULL; | |
params.no_alloc = false; | |
model.ctx = ggml_init(params); | |
if (!model.ctx) { | |
fprintf(stderr, "%s: ggml_init() failed\n", __func__); | |
return ModelLoadResult::FAIL; | |
} | |
} | |
// prepare memory for the weights | |
{ | |
const auto & hparams = model.hparams; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_vocab = hparams.n_vocab; | |
model.layers.resize(n_layer); | |
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); | |
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); | |
//model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab); | |
// map by name | |
model.tensors["gpt_neox.embed_in.weight"] = model.wte; | |
model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g; | |
model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b; | |
model.tensors["embed_out.weight"] = model.lmh_g; | |
//model.tensors["lm_head.bias"] = model.lmh_b; | |
for (int i = 0; i < n_layer; ++i) { | |
auto & layer = model.layers[i]; | |
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd); | |
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd); | |
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); | |
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); | |
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); | |
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); | |
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
// map by name | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight"] = layer.ln_1_g; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias"] = layer.ln_1_b; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight"] = layer.c_attn_attn_w; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias"] = layer.c_attn_attn_b; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight"] = layer.c_attn_proj_w; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias"] = layer.c_attn_proj_b; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight"] = layer.ln_2_g; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"] = layer.ln_2_b; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w; | |
model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b; | |
} | |
} | |
// key + value memory | |
{ | |
const auto & hparams = model.hparams; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_ctx = hparams.n_ctx; | |
const int64_t n_mem = n_layer*std::max(origmaxctx,n_ctx); | |
const int64_t n_elements = n_embd*n_mem; | |
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); | |
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem); | |
} | |
// load weights | |
{ | |
int n_tensors = 0; | |
size_t total_size = 0; | |
printf("%s: ", __func__); | |
while (true) { | |
int32_t n_dims; | |
int32_t length; | |
int32_t ttype; | |
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); | |
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); | |
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); | |
if (fin.eof()) { | |
break; | |
} | |
int32_t nelements = 1; | |
int32_t ne[2] = { 1, 1 }; | |
for (int i = 0; i < n_dims; ++i) { | |
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); | |
nelements *= ne[i]; | |
} | |
std::string name(length, 0); | |
fin.read(&name[0], length); | |
if (model.tensors.find(name.data()) == model.tensors.end()) { | |
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); | |
return ModelLoadResult::FAIL; | |
} | |
auto tensor = model.tensors[name.data()]; | |
if (ggml_nelements(tensor) != nelements) { | |
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); | |
return ModelLoadResult::FAIL; | |
} | |
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { | |
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, %5d], expected [%5d, %5d]\n", | |
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); | |
return ModelLoadResult::FAIL; | |
} | |
// for debugging | |
if (0) { | |
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); | |
} | |
const size_t bpe = ggml_type_size(ggml_type(ttype)); | |
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { | |
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", | |
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe); | |
ggml_free(ctx); | |
return ModelLoadResult::RETRY_LOAD; | |
} | |
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); | |
total_size += ggml_nbytes(tensor); | |
if (++n_tensors % 8 == 0) { | |
printf("."); | |
fflush(stdout); | |
} | |
} | |
printf(" done\n"); | |
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); | |
} | |
fin.close(); | |
//gpu offload | |
if(gpulayers>0) | |
{ | |
const auto & hparams = model.hparams; | |
size_t vram_total = 0; | |
const int n_gpu = std::min(gpulayers, int(hparams.n_layer)); | |
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu); | |
fprintf(stderr, "%s: [CUDA] offloading %d layers to GPU\n", __func__, n_gpu); | |
for (int i = 0; i < n_gpu; ++i) { | |
const auto & layer = model.layers[i]; | |
layer.c_attn_attn_w->backend = GGML_BACKEND_GPU; | |
layer.c_attn_proj_w->backend = GGML_BACKEND_GPU; | |
layer.c_mlp_fc_w->backend = GGML_BACKEND_GPU; | |
layer.c_mlp_proj_w->backend = GGML_BACKEND_GPU; | |
ggml_cl_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w); | |
ggml_cl_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w); | |
ggml_cl_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w); | |
ggml_cl_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w); | |
ggml_cuda_transform_tensor(layer.c_attn_attn_w->data,layer.c_attn_attn_w); vram_total += ggml_nbytes(layer.c_attn_attn_w); | |
ggml_cuda_transform_tensor(layer.c_attn_proj_w->data,layer.c_attn_proj_w); vram_total += ggml_nbytes(layer.c_attn_proj_w); | |
ggml_cuda_transform_tensor(layer.c_mlp_fc_w->data,layer.c_mlp_fc_w); vram_total += ggml_nbytes(layer.c_mlp_fc_w); | |
ggml_cuda_transform_tensor(layer.c_mlp_proj_w->data,layer.c_mlp_proj_w); vram_total += ggml_nbytes(layer.c_mlp_proj_w); | |
} | |
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); | |
fprintf(stderr, "%s: [CUDA] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
// feed-forward network | |
ggml_tensor * gpt_neox_ff( | |
const gpt_neox_layer &layer, | |
ggml_context * ctx0, | |
ggml_tensor * inp) { | |
ggml_tensor * cur = ggml_norm(ctx0, inp, default_norm_eps); | |
cur = ggml_add(ctx0, | |
ggml_mul(ctx0, | |
ggml_repeat(ctx0, layer.ln_2_g, cur), | |
cur), | |
ggml_repeat(ctx0, layer.ln_2_b, cur)); | |
cur = ggml_mul_mat(ctx0, | |
layer.c_mlp_fc_w, | |
cur); | |
cur = ggml_add(ctx0, | |
ggml_repeat(ctx0, layer.c_mlp_fc_b, cur), | |
cur); | |
// GELU activation | |
cur = ggml_gelu(ctx0, cur); | |
// projection | |
// cur = proj_w*cur + proj_b | |
cur = ggml_mul_mat(ctx0, | |
layer.c_mlp_proj_w, | |
cur); | |
cur = ggml_add(ctx0, | |
ggml_repeat(ctx0, layer.c_mlp_proj_b, cur), | |
cur); | |
return cur; | |
} | |
// evaluate the transformer | |
// | |
// - model: the model | |
// - n_threads: number of threads to use | |
// - n_past: the context size so far | |
// - embd_inp: the embeddings of the tokens in the context | |
// - embd_w: the predicted logits for the next token | |
// | |
bool gpt_neox_eval( | |
const gpt_neox_model & model, | |
const int n_threads, | |
const int n_past, | |
const std::vector<gpt_vocab::id> & embd_inp, | |
std::vector<float> & embd_w, | |
size_t & mem_per_token, | |
bool use_scratch) { | |
const int N = embd_inp.size(); | |
const auto & hparams = model.hparams; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_ctx = hparams.n_ctx; | |
const int n_head = hparams.n_head; | |
const int n_vocab = hparams.n_vocab; | |
const int n_rot = hparams.n_rot; | |
const float freq_base = hparams.rope_freq_base; | |
const float freq_scale = hparams.rope_freq_scale; | |
static size_t buf_size = 256u*1024*1024; | |
static void * buf = malloc(buf_size); | |
// use 2 scratch buffers | |
// TODO: very hacky solution - reimplement in a more elegant way | |
static size_t scr0_size = (n_embd>2400?512u:256u)*1024*1024*(hparams.n_ctx>8192?2:1); | |
static size_t scr1_size = (n_embd>2400?512u:256u)*1024*1024; | |
static void * scr0 = malloc(scr0_size); | |
static void * scr1 = malloc(scr1_size); | |
if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) { | |
const size_t buf_size_new = 360u*1024*1024 + 1.2*(mem_per_token*N); // add 10% to account for ggml object overhead | |
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new); | |
// reallocate | |
if (buf_size_new > buf_size) | |
{ | |
buf_size = buf_size_new; | |
buf = realloc(buf, buf_size); | |
if (buf == nullptr) | |
{ | |
fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size); | |
return false; | |
} | |
} | |
} | |
struct ggml_init_params params; | |
params.mem_size = buf_size; | |
params.mem_buffer = buf; | |
params.no_alloc = false; | |
struct ggml_context * ctx0 = ggml_init(params); | |
struct ggml_cgraph gf = {}; | |
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); | |
// wte | |
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); | |
for (int il = 0; il < n_layer; ++il) { | |
struct ggml_tensor * cur; | |
if(use_scratch){ | |
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); | |
} | |
// self-attention | |
{ | |
{ | |
cur = ggml_norm(ctx0, inpL, default_norm_eps); | |
cur = ggml_add(ctx0, | |
ggml_mul(ctx0, | |
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), | |
cur), | |
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); | |
} | |
// compute QKV | |
{ | |
cur = ggml_mul_mat(ctx0, | |
model.layers[il].c_attn_attn_w, | |
cur); | |
cur = ggml_add(ctx0, | |
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), | |
cur); | |
} | |
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head)); | |
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head)); | |
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head)); | |
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
{ | |
int * data = (int *) KQ_pos->data; | |
for (int i = 0; i < N; ++i) { | |
data[i] = n_past + i; | |
} | |
} | |
// using mode = 2 for GPT-NeoX mode | |
Qcur = ggml_rope_custom_inplace(ctx0, Qcur, KQ_pos, n_rot, 2, n_ctx, freq_base, freq_scale); | |
Kcur = ggml_rope_custom_inplace(ctx0, Kcur, KQ_pos, n_rot, 2, n_ctx, freq_base, freq_scale); | |
// store key and value to memory | |
{ | |
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N)); | |
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); | |
struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd, | |
( n_ctx)*ggml_element_size(model.memory_v), | |
(il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v)); | |
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); | |
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); | |
} | |
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) | |
struct ggml_tensor * Q = | |
ggml_permute(ctx0, | |
Qcur, | |
0, 2, 1, 3); | |
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) | |
struct ggml_tensor * K = | |
ggml_permute(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), | |
n_embd/n_head, n_head, n_past + N), | |
0, 2, 1, 3); | |
// K * Q | |
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
// KQ_scaled = KQ / sqrt(n_embd/n_head) | |
struct ggml_tensor * KQ_scaled = | |
ggml_scale_inplace(ctx0, | |
KQ, | |
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) | |
); | |
// KQ_masked = mask_past(KQ_scaled) | |
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); | |
// KQ = soft_max(KQ_masked) | |
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); | |
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() | |
struct ggml_tensor * V = | |
ggml_view_3d(ctx0, model.memory_v, | |
n_past + N, n_embd/n_head, n_head, | |
n_ctx*ggml_element_size(model.memory_v), | |
n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head, | |
il*n_ctx*ggml_element_size(model.memory_v)*n_embd); | |
// KQV = transpose(V) * KQ_soft_max | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | |
// KQV_merged = KQV.permute(0, 2, 1, 3) | |
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
// cur = KQV_merged.contiguous().view(n_embd, N) | |
cur = ggml_cpy(ctx0, | |
KQV_merged, | |
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | |
// projection | |
{ | |
cur = ggml_mul_mat(ctx0, | |
model.layers[il].c_attn_proj_w, | |
cur); | |
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur); | |
} | |
} | |
if(use_scratch){ | |
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, }); | |
} | |
if (hparams.par_res == 0) { | |
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL); | |
cur = gpt_neox_ff(model.layers[il], ctx0, inpFF); | |
// input for next layer | |
inpL = ggml_add(ctx0, cur, inpFF); | |
} else { | |
struct ggml_tensor * inpFF = cur; | |
// this is independent of the self-attention result, so it could be done in parallel to the self-attention | |
// note here we pass inpL instead of cur | |
cur = gpt_neox_ff(model.layers[il], ctx0, inpL); | |
// layer input + FF | |
cur = ggml_add(ctx0, cur, inpFF); | |
// input for next layer | |
inpL = ggml_add(ctx0, cur, inpL); | |
} | |
} | |
if(use_scratch){ | |
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, }); | |
} | |
// norm | |
{ | |
inpL = ggml_norm(ctx0, inpL, default_norm_eps); | |
// inpL = ln_f_g*inpL + ln_f_b | |
inpL = ggml_add(ctx0, | |
ggml_mul(ctx0, | |
ggml_repeat(ctx0, model.ln_f_g, inpL), | |
inpL), | |
ggml_repeat(ctx0, model.ln_f_b, inpL)); | |
} | |
if(use_scratch){ | |
ggml_set_scratch(ctx0, { 0, 0, nullptr, }); | |
} | |
// lm_head | |
{ | |
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); | |
//inpL = ggml_add(ctx0, | |
// ggml_repeat(ctx0, model.lmh_b, inpL), | |
// inpL); | |
} | |
// logits -> probs | |
//inpL = ggml_soft_max_inplace(ctx0, inpL); | |
// run the computation | |
ggml_build_forward_expand(&gf, inpL); | |
kcpp_graph_compute_helper(&gf, n_threads); | |
//if (n_past%100 == 0) { | |
// ggml_graph_print (&gf); | |
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); | |
//} | |
//embd_w.resize(n_vocab*N); | |
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); | |
// return result for just the last token | |
embd_w.resize(n_vocab); | |
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); | |
if (mem_per_token == 0) { | |
mem_per_token = ggml_used_mem(ctx0)/N; | |
} | |
//printf("used_mem = %zu\n", ggml_used_mem(ctx0)); | |
ggml_free(ctx0); | |
return true; | |
} | |