Koboldcpp / otherarch /gptj_v1.cpp
Illumotion's picture
Upload folder using huggingface_hub
3e5595b
#include "ggml_v1.h"
#include "otherarch.h"
#include "utils.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
// load the model's weights from a file
ModelLoadResult legacy_gptj_model_load(const std::string & fname, gptj_v1_model & model, gpt_vocab & vocab, FileFormat file_format) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
bool super_old_format = (file_format==FileFormat::GPTJ_1);
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return ModelLoadResult::FAIL;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return ModelLoadResult::FAIL;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
printf("%s: f16 = %d\n", __func__, hparams.ftype);
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
return ModelLoadResult::FAIL;
}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_v1_type wtype = GGML_V1_TYPE_COUNT;
switch (model.hparams.ftype) {
case 0: wtype = GGML_V1_TYPE_F32; break;
case 1: wtype = GGML_V1_TYPE_F16; break;
case 2: wtype = GGML_V1_TYPE_Q4_0; break;
case 3: wtype = GGML_V1_TYPE_Q4_1; break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return ModelLoadResult::FAIL;
}
}
const ggml_v1_type wtype2 = GGML_V1_TYPE_F32;
auto & ctx = model.ctx;
auto memory_type = GGML_V1_TYPE_F16;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32); // ln_f_b
ctx_size += n_embd*n_vocab*ggml_v1_type_sizef(wtype); // wte
ctx_size += n_embd*n_vocab*ggml_v1_type_sizef(wtype); // lmh_g
ctx_size += n_vocab*ggml_v1_type_sizef(GGML_V1_TYPE_F32); // lmh_b
ctx_size += n_layer*(n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*n_embd*ggml_v1_type_sizef(wtype)); // c_attn_q_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_v1_type_sizef(wtype)); // c_attn_k_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_v1_type_sizef(wtype)); // c_attn_v_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_v1_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*(4*n_embd*n_embd*ggml_v1_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_v1_type_sizef(wtype)); // c_mlp_proj_w_trans
ctx_size += n_layer*( n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_sizef(memory_type); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_sizef(memory_type); // memory_v
ctx_size += (5 + 10*n_layer)*256; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_v1_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = NULL;
model.ctx = ggml_v1_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_v1_init() failed\n", __func__);
return ModelLoadResult::FAIL;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte = ggml_v1_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.ln_f_g = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_embd);
model.ln_f_b = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_embd);
model.lmh_g = ggml_v1_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.lmh_b = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_vocab);
// map by name
model.tensors["transformer.wte.weight"] = model.wte;
model.tensors["transformer.ln_f.weight"] = model.ln_f_g;
model.tensors["transformer.ln_f.bias"] = model.ln_f_b;
model.tensors["lm_head.weight"] = model.lmh_g;
model.tensors["lm_head.bias"] = model.lmh_b;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_embd);
layer.ln_1_b = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_embd);
layer.c_attn_q_proj_w = ggml_v1_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_k_proj_w = ggml_v1_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_v_proj_w = ggml_v1_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_w = ggml_v1_new_tensor_2d(ctx, wtype, n_embd, n_embd);
if(super_old_format)
{
layer.c_mlp_fc_w = ggml_v1_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
}
else
{
layer.c_mlp_fc_w = ggml_v1_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
}
layer.c_mlp_fc_b = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w_trans = ggml_v1_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_embd);
// map by name
model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g;
model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b;
model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w_trans;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_mem = n_layer*n_ctx;
const int n_elements = n_embd*n_mem;
model.memory_k = ggml_v1_new_tensor_1d(ctx, memory_type, n_elements);
model.memory_v = ggml_v1_new_tensor_1d(ctx, memory_type, n_elements);
const size_t memory_size = ggml_v1_nbytes(model.memory_k) + ggml_v1_nbytes(model.memory_v);
printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return ModelLoadResult::FAIL;
}
auto tensor = model.tensors[name.data()];
if (ggml_v1_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return ModelLoadResult::FAIL;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1])
{
//test for transposition and retry older loader
if(tensor->ne[0]==ne[1] && tensor->ne[1]==ne[0] && should_transpose_layer(name))
{
printf("\nFound a transposed tensor. This could be an older or newer model. Retrying load...");
ggml_v1_free(ctx);
return ModelLoadResult::RETRY_LOAD;
}
else
{
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
return ModelLoadResult::FAIL;
}
}
if (0) {
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_v1_nbytes(tensor)/1024.0/1024.0, ggml_v1_nbytes(tensor));
}
size_t bpe = 0;
switch (ftype) {
case 0: bpe = ggml_v1_type_size(GGML_V1_TYPE_F32); break;
case 1: bpe = ggml_v1_type_size(GGML_V1_TYPE_F16); break;
case 2: bpe = ggml_v1_type_size(GGML_V1_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
case 3: bpe = ggml_v1_type_size(GGML_V1_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
default:
{
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
return ModelLoadResult::FAIL;
}
};
if ((nelements*bpe)/ggml_v1_blck_size(tensor->type) != ggml_v1_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_v1_nbytes(tensor), nelements*bpe);
return ModelLoadResult::FAIL;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_v1_nbytes(tensor));
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_v1_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_v1_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
fin.close();
return ModelLoadResult::SUCCESS;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
// The GPT-J model requires about 16MB of memory per input token.
//
bool legacy_gptj_eval(
const gptj_v1_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token,
FileFormat file_format) {
bool super_old_format = (file_format==FileFormat::GPTJ_1);
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
const int d_key = n_embd/n_head;
static size_t buf_size = 256u*1024*1024;
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_v1_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
struct ggml_v1_context * ctx0 = ggml_v1_init(params);
struct ggml_v1_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_v1_tensor * embd = ggml_v1_new_tensor_1d(ctx0, GGML_V1_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_v1_element_size(embd));
// wte
struct ggml_v1_tensor * inpL = ggml_v1_get_rows(ctx0, model.wte, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_v1_tensor * cur;
// norm
{
cur = ggml_v1_norm(ctx0, inpL);
// cur = ln_1_g*cur + ln_1_b
cur = ggml_v1_add(ctx0,
ggml_v1_mul(ctx0,
ggml_v1_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_v1_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
struct ggml_v1_tensor * inpSA = cur;
// self-attention
{
struct ggml_v1_tensor * Qcur;
struct ggml_v1_tensor * Kcur;
struct ggml_v1_tensor * Vcur;
if(super_old_format)
{
Qcur = ggml_v1_mul_mat(ctx0, ggml_v1_transpose(ctx0, model.layers[il].c_attn_q_proj_w), cur);
Kcur = ggml_v1_mul_mat(ctx0, ggml_v1_transpose(ctx0, model.layers[il].c_attn_k_proj_w), cur);
Vcur = ggml_v1_mul_mat(ctx0, ggml_v1_transpose(ctx0, model.layers[il].c_attn_v_proj_w), cur);
}
else
{
Qcur = ggml_v1_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur);
Kcur = ggml_v1_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur);
Vcur = ggml_v1_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur);
}
// store key and value to memory
if (N >= 1) {
struct ggml_v1_tensor * k = ggml_v1_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_v1_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
struct ggml_v1_tensor * v = ggml_v1_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_v1_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
ggml_v1_build_forward_expand(&gf, ggml_v1_cpy(ctx0, Kcur, k));
ggml_v1_build_forward_expand(&gf, ggml_v1_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_v1_tensor * Q =
ggml_v1_permute(ctx0,
ggml_v1_rope(ctx0,
ggml_v1_cpy(ctx0,
Qcur,
ggml_v1_new_tensor_3d(ctx0, GGML_V1_TYPE_F32, n_embd/n_head, n_head, N)),
n_past, n_rot, 0),
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_v1_tensor * K =
ggml_v1_permute(ctx0,
ggml_v1_rope(ctx0,
ggml_v1_reshape_3d(ctx0,
ggml_v1_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_v1_element_size(model.memory_k)*n_embd),
n_embd/n_head, n_head, n_past + N),
n_past, n_rot, 1),
0, 2, 1, 3);
// K * Q
struct ggml_v1_tensor * KQ = ggml_v1_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_v1_tensor * KQ_scaled =
ggml_v1_scale(ctx0,
KQ,
ggml_v1_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_v1_tensor * KQ_masked = ggml_v1_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_v1_tensor * KQ_soft_max = ggml_v1_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_v1_tensor * V_trans =
ggml_v1_permute(ctx0,
ggml_v1_reshape_3d(ctx0,
ggml_v1_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_v1_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3);
// KQV = transpose(V) * KQ_soft_max
struct ggml_v1_tensor * KQV = ggml_v1_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_v1_tensor * KQV_merged = ggml_v1_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_v1_cpy(ctx0,
KQV_merged,
ggml_v1_new_tensor_2d(ctx0, GGML_V1_TYPE_F32, n_embd, N));
// projection (no bias)
if(super_old_format)
{
cur = ggml_v1_mul_mat(ctx0,
ggml_v1_transpose(ctx0, model.layers[il].c_attn_proj_w),
cur);
}
else
{
cur = ggml_v1_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
}
}
struct ggml_v1_tensor * inpFF = cur;
// feed-forward network
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
{
// note here we pass inpSA instead of cur
if(super_old_format)
{
cur = ggml_v1_mul_mat(ctx0,
ggml_v1_transpose(ctx0, model.layers[il].c_mlp_fc_w),
inpSA);
}else{
cur = ggml_v1_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
inpSA);
}
cur = ggml_v1_add(ctx0,
ggml_v1_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
cur);
// GELU activation
cur = ggml_v1_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_v1_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w_trans,
cur);
cur = ggml_v1_add(ctx0,
ggml_v1_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
cur);
}
// self-attention + FF
cur = ggml_v1_add(ctx0, cur, inpFF);
// input for next layer
inpL = ggml_v1_add(ctx0, cur, inpL);
}
// norm
{
inpL = ggml_v1_norm(ctx0, inpL);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_v1_add(ctx0,
ggml_v1_mul(ctx0,
ggml_v1_repeat(ctx0, model.ln_f_g, inpL),
inpL),
ggml_v1_repeat(ctx0, model.ln_f_b, inpL));
}
// lm_head
{
inpL = ggml_v1_mul_mat(ctx0, model.lmh_g, inpL);
inpL = ggml_v1_add(ctx0,
ggml_v1_repeat(ctx0, model.lmh_b, inpL),
inpL);
}
// logits -> probs
//inpL = ggml_v1_soft_max(ctx0, inpL);
// run the computation
ggml_v1_build_forward_expand(&gf, inpL);
ggml_v1_graph_compute (ctx0, &gf);
//if (n_past%100 == 0) {
// ggml_v1_graph_print (&gf);
// ggml_v1_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_v1_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_v1_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_v1_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_v1_used_mem(ctx0));
ggml_v1_free(ctx0);
return true;
}