Spaces:
Build error
Build error
static std::string program_source = MULTILINE_QUOTE( | |
typedef char int8_t; | |
typedef uchar uint8_t; | |
typedef int int32_t; | |
typedef uint uint32_t; | |
struct block_q4_0 | |
{ | |
float d; | |
uint8_t qs[16]; | |
}; | |
struct block_q4_1 | |
{ | |
float d; | |
float m; | |
uint8_t qs[16]; | |
}; | |
struct __attribute__ ((packed)) block_q5_0 | |
{ | |
half d; | |
uint32_t qh; | |
uint8_t qs[16]; | |
}; | |
struct block_q5_1 | |
{ | |
half d; | |
half m; | |
uint32_t qh; | |
uint8_t qs[16]; | |
}; | |
struct block_q8_0 | |
{ | |
float d; | |
uint8_t qs[32]; | |
}; | |
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { | |
const uint i = get_global_id(0); | |
y[i] = vload_half(0, &x[i]); | |
} | |
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = x[ib].d; | |
const uint8_t vui = x[ib].qs[iqs]; | |
const int8_t vi0 = vui & 0xF; | |
const int8_t vi1 = vui >> 4; | |
*v0 = (vi0 - 8)*d; | |
*v1 = (vi1 - 8)*d; | |
} | |
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = x[ib].d; | |
const float m = x[ib].m; | |
const uint8_t vui = x[ib].qs[iqs]; | |
const int8_t vi0 = vui & 0xF; | |
const int8_t vi1 = vui >> 4; | |
*v0 = vi0*d + m; | |
*v1 = vi1*d + m; | |
} | |
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = vload_half(0, (__global half*) &x[ib].d); | |
uint32_t qh = x[ib].qh; | |
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; | |
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; | |
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; | |
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; | |
*v0 = x0*d; | |
*v1 = x1*d; | |
} | |
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = vload_half(0, (__global half*) &x[ib].d); | |
const float m = vload_half(0, (__global half*) &x[ib].m); | |
uint32_t qh = x[ib].qh; | |
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; | |
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; | |
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); | |
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); | |
*v0 = x0*d + m; | |
*v1 = x1*d + m; | |
} | |
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = x[ib].d; | |
const int8_t vi0 = x[ib].qs[iqs + 0]; | |
const int8_t vi1 = x[ib].qs[iqs + 1]; | |
*v0 = vi0*d; | |
*v1 = vi1*d; | |
} | |
static void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){ | |
*v0 = vload_half(0, &x[ib + 0]); | |
*v1 = vload_half(0, &x[ib + 1]); | |
} | |
); | |
static std::string dequant_template = MULTILINE_QUOTE( | |
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { | |
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; | |
if (i >= get_global_size(0)) { | |
return; | |
} | |
const uint qk = QUANT_K; | |
const uint qr = QUANT_R; | |
const int ib = i/qk; // block index | |
const int iqs = (i%qk)/qr; // quant index | |
const int iybs = i - i%qk; // y block start index | |
const int y_offset = qr == 1 ? 1 : qk/2; | |
// dequantize | |
float v0, v1; | |
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); | |
y[iybs + iqs + 0] = v0; | |
y[iybs + iqs + y_offset] = v1; | |
} | |
); | |
static std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( | |
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { | |
const int block_size = get_local_size(0); | |
const int row = get_global_id(0) / block_size; | |
const int tid = get_local_id(0); | |
const uint qk = QUANT_K; | |
const uint qr = QUANT_R; | |
const int y_offset = qr == 1 ? 1 : qk/2; | |
tmp[tid] = 0; | |
for (int i = 0; i < ncols/block_size; i += 2) { | |
const int col = i*block_size + 2*tid; | |
const int ib = (row*ncols + col)/qk; // block index | |
const int iqs = (col%qk)/qr; // quant index | |
const int iybs = col - col%qk; // y block start index | |
// dequantize | |
float v0, v1; | |
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); | |
// matrix multiplication | |
tmp[tid] += v0 * y[iybs + iqs + 0]; | |
tmp[tid] += v1 * y[iybs + iqs + y_offset]; | |
} | |
// sum up partial sums and write back result | |
barrier(CLK_LOCAL_MEM_FENCE); | |
for (int s=block_size/2; s>0; s>>=1) { | |
if (tid < s) { | |
tmp[tid] += tmp[tid + s]; | |
} | |
barrier(CLK_LOCAL_MEM_FENCE); | |
} | |
if (tid == 0) { | |
dst[row] = tmp[0]; | |
} | |
} | |
); | |
static std::array<std::string, 5> dequant_str_keys = { | |
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC" | |
}; | |
static std::array<std::string, 30> dequant_str_values = { | |
"dequantize_row_q4_0", "struct block_q4_0", "32", "2", "dequantize_q4_0", | |
"dequantize_row_q4_1", "struct block_q4_1", "32", "2", "dequantize_q4_1", | |
"dequantize_row_q5_0", "struct block_q5_0", "32", "2", "dequantize_q5_0", | |
"dequantize_row_q5_1", "struct block_q5_1", "32", "2", "dequantize_q5_1", | |
"dequantize_row_q8_0", "struct block_q8_0", "32", "1", "dequantize_q8_0", | |
"convert_row_f16", "half", "1", "1", "convert_f16" | |
}; | |
static std::array<std::string, 30> dequant_mul_mat_vec_str_values = { | |
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "32", "2", "dequantize_q4_0", | |
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "32", "2", "dequantize_q4_1", | |
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "32", "2", "dequantize_q5_0", | |
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "32", "2", "dequantize_q5_1", | |
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "32", "1", "dequantize_q8_0", | |
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" | |
}; | |
static std::string& sreplace2(std::string& s, const std::string& from, const std::string& to) { | |
size_t pos = 0; | |
while ((pos = s.find(from, pos)) != std::string::npos) { | |
s.replace(pos, from.length(), to); | |
pos += to.length(); | |
} | |
return s; | |
} | |
static std::string generate_kernels() { | |
std::stringstream src; | |
src << program_source << '\n'; | |
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { | |
std::string dequant_kernel = dequant_template; | |
std::string dmmv_kernel = dequant_mul_mat_vec_template; | |
for (size_t j = 0; j < dequant_str_keys.size(); j++) { | |
sreplace2(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]); | |
sreplace2(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]); | |
} | |
src << dequant_kernel << '\n'; | |
src << dmmv_kernel << '\n'; | |
} | |
return src.str(); | |
} | |
static cl_platform_id platform; | |
static cl_device_id device; | |
static cl_context context; | |
static cl_command_queue queue; | |
static cl_program program; | |
static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c; | |
static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0; | |
static cl_kernel convert_row_f16_cl; | |
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; | |
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; | |
static bool fp16_support = false; | |
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { | |
cl_program p; | |
char *program_log; | |
size_t program_size, log_size; | |
int err; | |
program_size = strlen(program_buffer); | |
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); | |
if(err < 0) { | |
fprintf(stderr, "OpenCL error creating program"); | |
exit(1); | |
} | |
err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL); | |
if(err < 0) { | |
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); | |
program_log = (char*) malloc(log_size + 1); | |
program_log[log_size] = '\0'; | |
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); | |
printf("%s\n", program_log); | |
free(program_log); | |
exit(1); | |
} | |
return p; | |
} | |
void ggml_v2_cl_init(void) { | |
cl_int err = 0; | |
char * GGML_V2_CLBLAST_PLATFORM = getenv("GGML_OPENCL_PLATFORM"); | |
char * GGML_V2_CLBLAST_DEVICE = getenv("GGML_OPENCL_DEVICE"); | |
int plat_num = (GGML_V2_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_V2_CLBLAST_PLATFORM)); | |
int dev_num = (GGML_V2_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_V2_CLBLAST_DEVICE)); | |
printf("\nInitializing LEGACY v2 CLBlast (First Run)..."); | |
printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num); | |
cl_uint num_platforms; | |
clGetPlatformIDs(0, NULL, &num_platforms); | |
cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id)); | |
clGetPlatformIDs(num_platforms, platforms, NULL); | |
platform = platforms[plat_num]; | |
char platform_buffer[1024]; | |
clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL); | |
cl_uint num_devices; | |
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices); | |
cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id)); | |
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL); | |
device = devices[dev_num]; | |
char device_buffer[1024]; | |
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL); | |
size_t ext_str_size; | |
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); | |
char* ext_buffer = (char*) malloc(sizeof(char) * ext_str_size); | |
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); | |
// Check if ext_buffer contains cl_khr_fp16 | |
for (size_t i = 0; i < ext_str_size - 12; i++) { | |
if (memcmp(ext_buffer + i, "cl_khr_fp16", 11) == 0) { | |
fp16_support = true; | |
break; | |
} | |
} | |
free(ext_buffer); | |
printf("Using Platform: %s Device: %s FP16: %d\n", platform_buffer, device_buffer, fp16_support); | |
fp16_support = false; | |
printf("CL FP16 temporarily disabled pending further optimization.\n"); | |
context = clCreateContext(NULL, 1, &device, NULL, NULL, &err); | |
CL_CHECK(err, "clCreateContext"); | |
queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err); | |
CL_CHECK(err, "clCreateCommandQueue"); | |
free(platforms); | |
free(devices); | |
std::string kernel_src = generate_kernels(); | |
program = build_program_from_source(context, device, kernel_src.c_str()); | |
// FP16 to FP32 kernel | |
convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
// Dequantize kernels | |
dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
// dequant mul mat kernel | |
dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err); | |
CL_CHECK(err, "clCreateKernel"); | |
} | |
static void ggml_v2_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) { | |
if (req_size <= *cur_size) { | |
return; | |
} | |
// Reallocate buffer with enough space | |
if (*cur_size > 0) { | |
clReleaseMemObject(*buf); | |
} | |
cl_int err; | |
*buf = clCreateBuffer(context, flags, req_size, NULL, &err); | |
*cur_size = req_size; | |
CL_CHECK(err, "clCreateBuffer"); | |
} | |
static cl_kernel* ggml_v2_get_to_fp32_cl(ggml_v2_type type) { | |
switch (type) { | |
case GGML_V2_TYPE_Q4_0: | |
return &dequantize_row_q4_0_cl; | |
case GGML_V2_TYPE_Q4_1: | |
return &dequantize_row_q4_1_cl; | |
case GGML_V2_TYPE_Q5_0: | |
return &dequantize_row_q5_0_cl; | |
case GGML_V2_TYPE_Q5_1: | |
return &dequantize_row_q5_1_cl; | |
case GGML_V2_TYPE_Q8_0: | |
return &dequantize_row_q8_0_cl; | |
case GGML_V2_TYPE_F16: | |
return &convert_row_f16_cl; | |
default: | |
return nullptr; | |
} | |
} | |
static cl_kernel* ggml_v2_get_dequantize_mul_mat_vec_cl(ggml_v2_type type) { | |
switch (type) { | |
case GGML_V2_TYPE_Q4_0: | |
return &dequantize_mul_mat_vec_q4_0_cl; | |
case GGML_V2_TYPE_Q4_1: | |
return &dequantize_mul_mat_vec_q4_1_cl; | |
case GGML_V2_TYPE_Q5_0: | |
return &dequantize_mul_mat_vec_q5_0_cl; | |
case GGML_V2_TYPE_Q5_1: | |
return &dequantize_mul_mat_vec_q5_1_cl; | |
case GGML_V2_TYPE_Q8_0: | |
return &dequantize_mul_mat_vec_q8_0_cl; | |
case GGML_V2_TYPE_F16: | |
return &convert_mul_mat_vec_f16_cl; | |
default: | |
return nullptr; | |
} | |
} | |
// buffer pool for cl | |
struct scoped_spin_lock { | |
std::atomic_flag& lock; | |
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { | |
while (lock.test_and_set(std::memory_order_acquire)) { | |
; // spin | |
} | |
} | |
~scoped_spin_lock() { | |
lock.clear(std::memory_order_release); | |
} | |
scoped_spin_lock(const scoped_spin_lock&) = delete; | |
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; | |
}; | |
struct cl_buffer { | |
cl_mem mem; | |
size_t size = 0; | |
}; | |
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS]; | |
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT; | |
static cl_mem ggml_v2_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) { | |
scoped_spin_lock lock(g_cl_pool_lock); | |
cl_int err; | |
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { | |
cl_buffer& b = g_cl_buffer_pool[i]; | |
if (b.size > 0 && b.size >= size) { | |
cl_mem mem = b.mem; | |
*actual_size = b.size; | |
b.size = 0; | |
return mem; | |
} | |
} | |
cl_mem mem = clCreateBuffer(context, flags, size, NULL, &err); | |
CL_CHECK(err, "clCreateBuffer"); | |
*actual_size = size; | |
return mem; | |
} | |
static void ggml_v2_cl_pool_free(cl_mem mem, size_t size) { | |
scoped_spin_lock lock(g_cl_pool_lock); | |
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { | |
cl_buffer& b = g_cl_buffer_pool[i]; | |
if (b.size == 0) { | |
b.mem = mem; | |
b.size = size; | |
return; | |
} | |
} | |
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n"); | |
clReleaseMemObject(mem); | |
} | |
static cl_int ggml_v2_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_v2_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) { | |
cl_int err; | |
const uint64_t ne0 = src->ne[0]; | |
const uint64_t ne1 = src->ne[1]; | |
const uint64_t nb0 = src->nb[0]; | |
const uint64_t nb1 = src->nb[1]; | |
const uint64_t nb2 = src->nb[2]; | |
const uint64_t nb3 = src->nb[3]; | |
const enum ggml_v2_type type = src->type; | |
const size_t ts = ggml_v2_type_size(type); | |
const size_t bs = ggml_v2_blck_size(type); | |
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); | |
if (nb0 == ts && nb1 == ts*ne0/bs) { | |
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev); | |
return err; | |
} | |
if (nb0 == ts) { | |
const size_t buffer_origin[3] = { offset, 0, 0 }; | |
const size_t host_origin[3] = { 0, 0, 0 }; | |
const size_t region[3] = { ts*ne0/bs, ne1, 1 }; | |
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev); | |
return err; | |
} | |
for (uint64_t i1 = 0; i1 < ne1; i1++) { | |
// pretend the row is a matrix with cols=1 | |
const size_t buffer_origin[3] = { offset, i1, 0 }; | |
const size_t host_origin[3] = { 0, 0, 0 }; | |
const size_t region[3] = { ts/bs, ne0, 1 }; | |
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev); | |
if (err != CL_SUCCESS) { | |
break; | |
} | |
} | |
return err; | |
} | |
static void ggml_v2_cl_mul_mat_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const float alpha = 1.0f; | |
const float beta = 0.0f; | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
size_t x_size, y_size, d_size; | |
cl_mem d_X = ggml_v2_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_ONLY); | |
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY); | |
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY); | |
cl_int err; | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
// copy data to device | |
err = ggml_v2_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL); | |
err |= ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL); | |
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d"); | |
CL_CHECK(clFinish(queue), "clFinish"); | |
// compute | |
cl_event ev_sgemm; | |
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, | |
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, | |
ne01, ne11, ne10, | |
alpha, | |
d_X, 0, ne00, | |
d_Y, 0, ne10, | |
beta, | |
d_D, 0, ne01, | |
&queue, &ev_sgemm); | |
if (status != clblast::StatusCode::kSuccess) { | |
printf("\nF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); | |
GGML_V2_ASSERT(false); | |
} | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
err = clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL); | |
CL_CHECK(err, "clEnqueueReadBuffer"); | |
} | |
} | |
ggml_v2_cl_pool_free(d_X, x_size); | |
ggml_v2_cl_pool_free(d_Y, y_size); | |
ggml_v2_cl_pool_free(d_D, d_size); | |
} | |
static void ggml_v2_cl_mul_mat_f16(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst, void * wdata, size_t /* wsize */) { | |
GGML_V2_ASSERT(fp16_support); | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb10 = src1->nb[0]; | |
const int nb11 = src1->nb[1]; | |
const int nb12 = src1->nb[2]; | |
const int nb13 = src1->nb[3]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const ggml_v2_fp16_t alpha = ggml_v2_fp32_to_fp16(1.0f); | |
const ggml_v2_fp16_t beta = ggml_v2_fp32_to_fp16(0.0f); | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
size_t x_size, y_size, d_size; | |
cl_mem d_X = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY); | |
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY); | |
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(ggml_v2_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY); | |
cl_int err; | |
bool src1_cont_rows = nb10 == sizeof(float); | |
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
// copy src0 to device | |
err = ggml_v2_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL); | |
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d"); | |
// convert src1 to fp16 | |
// TODO: use multiple threads | |
ggml_v2_fp16_t * const tmp = (ggml_v2_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); | |
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; | |
if (src1_cont_rows) { | |
if (src1_cont_cols) { | |
ggml_v2_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); | |
} | |
else { | |
for (int64_t i01 = 0; i01 < ne11; i01++) { | |
ggml_v2_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); | |
} | |
} | |
} | |
else { | |
for (int64_t i01 = 0; i01 < ne11; i01++) { | |
for (int64_t i00 = 0; i00 < ne10; i00++) { | |
// very slow due to no inlining | |
tmp[i01*ne10 + i00] = ggml_v2_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); | |
} | |
} | |
} | |
// copy src1 to device | |
err |= clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_v2_fp16_t) * y_ne, tmp, 0, NULL, NULL); | |
CL_CHECK(err, "ggml_v2_cl_h2d_tensor_2d"); | |
CL_CHECK(clFinish(queue), "clFinish"); | |
// compute | |
cl_event ev_sgemm; | |
clblast::StatusCode status = (clblast::StatusCode)CLBlastHgemm((CLBlastLayout)clblast::Layout::kColMajor, | |
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, | |
ne01, ne11, ne10, | |
alpha, | |
d_X, 0, ne00, | |
d_Y, 0, ne10, | |
beta, | |
d_D, 0, ne01, | |
&queue, &ev_sgemm); | |
if (status != clblast::StatusCode::kSuccess) { | |
printf("\nF16 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); | |
GGML_V2_ASSERT(false); | |
} | |
// copy dst to host, then convert to float | |
err = clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_v2_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL); | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
ggml_v2_fp16_to_fp32_row(tmp, d, d_ne); | |
} | |
} | |
ggml_v2_cl_pool_free(d_X, x_size); | |
ggml_v2_cl_pool_free(d_Y, y_size); | |
ggml_v2_cl_pool_free(d_D, d_size); | |
} | |
static void ggml_v2_cl_mul_mat_q_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const ggml_v2_type type = src0->type; | |
const bool mul_mat_vec = ne11 == 1; | |
const float alpha = 1.0f; | |
const float beta = 0.0f; | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
const size_t q_sz = ggml_v2_type_size(type) * x_ne / ggml_v2_blck_size(type); | |
size_t x_size, y_size, d_size, q_size; | |
cl_mem d_X; | |
if (!mul_mat_vec) { | |
d_X = ggml_v2_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE); | |
} | |
cl_mem d_Y = ggml_v2_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY); | |
cl_mem d_D = ggml_v2_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY); | |
cl_mem d_Q; | |
if (src0->backend == GGML_V2_BACKEND_CPU) { | |
d_Q = ggml_v2_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY); | |
} | |
cl_kernel* to_fp32_cl = ggml_v2_get_to_fp32_cl(type); | |
cl_kernel* dmmv = ggml_v2_get_dequantize_mul_mat_vec_cl(type); | |
GGML_V2_ASSERT(to_fp32_cl != nullptr); | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
cl_event ev_sgemm; | |
// copy src0 to device if necessary | |
if (src0->backend == GGML_V2_BACKEND_CPU) { | |
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d"); | |
} else if (src0->backend == GGML_V2_BACKEND_CL) { | |
d_Q = *(cl_mem*) src0->data; | |
} else { | |
GGML_V2_ASSERT(false); | |
} | |
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel | |
// copy src1 to device | |
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d"); | |
// compute | |
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE; | |
const size_t local = CL_DMMV_BLOCK_SIZE; | |
const cl_int ncols = ne00; | |
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg"); | |
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL), "clSetKernelArg"); | |
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y), "clSetKernelArg"); | |
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D), "clSetKernelArg"); | |
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols), "clSetKernelArg"); | |
CL_CHECK(clFinish(queue), "clFinish"); | |
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm), "clEnqueueNDRangeKernel"); | |
} else { // general dequantization kernel + CLBlast matrix matrix multiplication | |
// convert src0 to fp32 on device | |
const size_t global = x_ne; | |
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q), "clSetKernelArg"); | |
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X), "clSetKernelArg"); | |
CL_CHECK(clFinish(queue), "clFinish"); | |
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL), "clEnqueueNDRangeKernel"); | |
// copy src1 to device | |
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL), "ggml_v2_cl_h2d_tensor_2d"); | |
// wait for conversion | |
CL_CHECK(clFinish(queue), "clFinish"); | |
// compute | |
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, | |
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, | |
ne01, ne11, ne10, | |
alpha, | |
d_X, 0, ne00, | |
d_Y, 0, ne10, | |
beta, | |
d_D, 0, ne01, | |
&queue, &ev_sgemm); | |
if (status != clblast::StatusCode::kSuccess) { | |
printf("\nQF32 Matmul Failed (%d): [dims: %ld,%ld,%ld,%ld] You may be out of VRAM. Please check if you have enough.\n",static_cast<int>(status),ne00,ne01,ne10,ne11); | |
GGML_V2_ASSERT(false); | |
} | |
} | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL), "clEnqueueReadBuffer"); | |
clReleaseEvent(ev_sgemm); | |
} | |
} | |
if (!mul_mat_vec) { | |
ggml_v2_cl_pool_free(d_X, x_size); | |
} | |
ggml_v2_cl_pool_free(d_Y, y_size); | |
ggml_v2_cl_pool_free(d_D, d_size); | |
if (src0->backend == GGML_V2_BACKEND_CPU) { | |
ggml_v2_cl_pool_free(d_Q, q_size); | |
} | |
} | |
bool ggml_v2_cl_can_mul_mat(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) { | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne0 = dst->ne[0]; | |
const int64_t ne1 = dst->ne[1]; | |
// TODO: find the optimal values for these | |
if ((src0->type == GGML_V2_TYPE_F32 || src0->type == GGML_V2_TYPE_F16 || ggml_v2_is_quantized(src0->type)) && | |
src1->type == GGML_V2_TYPE_F32 && | |
dst->type == GGML_V2_TYPE_F32 && | |
((GetQuantsUnshuffled() && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_V2_BACKEND_CL)) { | |
return true; | |
} | |
return false; | |
} | |
bool ggml_v2_cl_mul_mat_use_f16(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * /* dst */) { | |
// If device doesn't support FP16 | |
if (!fp16_support) { | |
return false; | |
} | |
size_t src0_sz = ggml_v2_nbytes(src0); | |
size_t src1_sz = ggml_v2_nbytes(src1); | |
// mul_mat_q: src0 is converted to fp32 on device | |
size_t mul_mat_q_transfer = src0_sz + src1_sz; | |
// mul_mat_f16: src1 is converted to fp16 on cpu | |
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_v2_fp16_t) * ggml_v2_nelements(src1); | |
// choose the smaller one to transfer to the device | |
// TODO: this is not always the best choice due to the overhead of converting to fp16 | |
return mul_mat_f16_transfer < mul_mat_q_transfer; | |
} | |
void ggml_v2_cl_mul_mat(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst, void * wdata, size_t wsize) { | |
GGML_V2_ASSERT(ggml_v2_cl_can_mul_mat(src0, src1, dst)); | |
if (src0->type == GGML_V2_TYPE_F32) { | |
ggml_v2_cl_mul_mat_f32(src0, src1, dst); | |
} | |
else if (src0->type == GGML_V2_TYPE_F16) { | |
if (ggml_v2_cl_mul_mat_use_f16(src0, src1, dst)) { | |
ggml_v2_cl_mul_mat_f16(src0, src1, dst, wdata, wsize); | |
} | |
else { | |
ggml_v2_cl_mul_mat_q_f32(src0, src1, dst); | |
} | |
} | |
else if (ggml_v2_is_quantized(src0->type)) { | |
ggml_v2_cl_mul_mat_q_f32(src0, src1, dst); | |
} | |
else { | |
GGML_V2_ASSERT(false); | |
} | |
} | |
size_t ggml_v2_cl_mul_mat_get_wsize(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) { | |
if (ggml_v2_cl_mul_mat_use_f16(src0, src1, dst)) { | |
return ggml_v2_nelements(src1) * sizeof(ggml_v2_fp16_t); | |
} | |
return 0; | |
} | |
void ggml_v2_cl_transform_tensor(ggml_v2_tensor * tensor) { | |
const int64_t ne0 = tensor->ne[0]; | |
const int64_t ne1 = tensor->ne[1]; | |
const int64_t ne2 = tensor->ne[2]; | |
const int64_t ne3 = tensor->ne[3]; | |
const ggml_v2_type type = tensor->type; | |
const size_t q_sz = ggml_v2_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_v2_blck_size(type); | |
size_t q_size; | |
cl_mem* dst = (cl_mem*) malloc(sizeof(cl_mem)); | |
*dst = ggml_v2_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY); | |
// copy tensor to device | |
for (int64_t i3 = 0; i3 < ne3; i3++) { | |
for (int64_t i2 = 0; i2 < ne2; i2++) { | |
int i = i3*ne2 + i2; | |
CL_CHECK(ggml_v2_cl_h2d_tensor_2d(queue, *dst, i*ne0*ne1, tensor, i3, i2, NULL), "ggml_v2_cl_h2d_tensor_2d"); | |
} | |
} | |
CL_CHECK(clFinish(queue), "clFinish"); | |
tensor->data = dst; | |
tensor->backend = GGML_V2_BACKEND_CL; | |
} | |
void ggml_v2_cl_sgemm_wrapper( | |
const enum ggml_v2_blas_order order, const enum ggml_v2_blas_op trans_a, const enum ggml_v2_blas_op trans_b, | |
const int m, const int n, const int k, | |
const float alpha, const void *host_a, const int lda, | |
const float *host_b, const int ldb, const float beta, | |
float *host_c, const int ldc, const int btype) { | |
cl_int err = 0; | |
cl_kernel * kernel = ggml_v2_get_to_fp32_cl((ggml_v2_type)btype); | |
size_t global = n * k, local, size_qb; | |
bool dequant; | |
switch (btype) { | |
case GGML_V2_TYPE_F32: | |
dequant = false; | |
break; | |
case GGML_V2_TYPE_Q4_0: | |
dequant = true; | |
local = 16; | |
size_qb = global * (sizeof(float) + local) / 32; | |
break; | |
case GGML_V2_TYPE_Q4_1: | |
dequant = true; | |
local = 16; | |
size_qb = global * (sizeof(float) * 2 + local) / 32; | |
break; | |
case GGML_V2_TYPE_Q5_0: | |
dequant = true; | |
local = 16; | |
size_qb = global * (sizeof(ggml_v2_fp16_t) + sizeof(uint32_t) + local) / 32; | |
break; | |
case GGML_V2_TYPE_Q5_1: | |
dequant = true; | |
local = 16; | |
size_qb = global * (sizeof(ggml_v2_fp16_t) * 2 + sizeof(uint32_t) + local) / 32; | |
break; | |
case GGML_V2_TYPE_Q8_0: | |
dequant = true; | |
local = 32; | |
size_qb = global * (sizeof(float) + local) / 32; | |
break; | |
default: | |
fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype); | |
abort(); | |
} | |
const size_t size_a = m * k * sizeof(float); | |
const size_t size_b = n * k * sizeof(float); | |
const size_t size_c = m * n * sizeof(float); | |
// Prepare buffers | |
ggml_v2_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a); | |
if (dequant) { | |
ggml_v2_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb); | |
} | |
ggml_v2_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b); | |
ggml_v2_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c); | |
cl_event ev_a, ev_qb, ev_b; | |
if (dequant) { | |
err = clSetKernelArg(*kernel, 0, sizeof(cl_mem), &cl_buffer_qb); | |
err |= clSetKernelArg(*kernel, 1, sizeof(cl_mem), &cl_buffer_b); | |
CL_CHECK(err, "clSetKernelArg"); | |
err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb); | |
CL_CHECK(err, "clEnqueueWriteBuffer qb"); | |
} else { | |
err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b); | |
CL_CHECK(err, "clEnqueueWriteBuffer b"); | |
} | |
err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a); | |
CL_CHECK(err, "clEnqueueWriteBuffer a"); | |
if (dequant) { | |
err = clEnqueueNDRangeKernel(queue, *kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b); | |
CL_CHECK(err, "clEnqueueNDRangeKernel"); | |
clReleaseEvent(ev_qb); | |
} | |
clWaitForEvents(1, &ev_a); | |
clWaitForEvents(1, &ev_b); | |
clReleaseEvent(ev_a); | |
clReleaseEvent(ev_b); | |
cl_event ev_sgemm; | |
CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order, | |
(CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b, | |
m, n, k, | |
alpha, | |
cl_buffer_a, 0, lda, | |
cl_buffer_b, 0, ldb, | |
beta, | |
cl_buffer_c, 0, ldc, | |
&queue, &ev_sgemm); | |
if (status != CLBlastSuccess) { | |
fprintf(stderr, "Error: CLBlast SGEMM %d\n", status); | |
abort(); | |
} | |
cl_event ev_c; | |
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c); | |
// Wait for completion | |
clWaitForEvents(1, &ev_c); | |
clReleaseEvent(ev_sgemm); | |
clReleaseEvent(ev_c); | |
} | |