Spaces:
Build error
Build error
static_assert(sizeof(half) == sizeof(ggml_v2_fp16_t), "wrong fp16 size"); | |
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1); | |
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); | |
typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream); | |
// QK = number of values after dequantization | |
// QR = QK / number of values before dequantization | |
typedef struct { | |
float d; // delta | |
uint8_t qs[QK4_0 / 2]; // nibbles / quants | |
} block_q4_0; | |
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); | |
typedef struct { | |
float d; // delta | |
float m; // min | |
uint8_t qs[QK4_1 / 2]; // nibbles / quants | |
} block_q4_1; | |
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); | |
typedef struct { | |
half d; // delta | |
uint8_t qh[4]; // 5-th bit of quants | |
uint8_t qs[QK5_0 / 2]; // nibbles / quants | |
} block_q5_0; | |
static_assert(sizeof(block_q5_0) == sizeof(ggml_v2_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); | |
typedef struct { | |
half d; // delta | |
half m; // min | |
uint8_t qh[4]; // 5-th bit of quants | |
uint8_t qs[QK5_1 / 2]; // nibbles / quants | |
} block_q5_1; | |
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_v2_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); | |
typedef struct { | |
float d; // delta | |
int8_t qs[QK8_0]; // quants | |
} block_q8_0; | |
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); | |
static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ | |
const block_q4_0 * x = (const block_q4_0 *) vx; | |
const float d = x[ib].d; | |
const uint8_t vui = x[ib].qs[iqs]; | |
const int8_t vi0 = vui & 0xF; | |
const int8_t vi1 = vui >> 4; | |
v0 = (vi0 - 8)*d; | |
v1 = (vi1 - 8)*d; | |
} | |
static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ | |
const block_q4_1 * x = (const block_q4_1 *) vx; | |
const float d = x[ib].d; | |
const float m = x[ib].m; | |
const uint8_t vui = x[ib].qs[iqs]; | |
const int8_t vi0 = vui & 0xF; | |
const int8_t vi1 = vui >> 4; | |
v0 = vi0*d + m; | |
v1 = vi1*d + m; | |
} | |
static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ | |
const block_q5_0 * x = (const block_q5_0 *) vx; | |
const float d = x[ib].d; | |
uint32_t qh; | |
memcpy(&qh, x[ib].qh, sizeof(qh)); | |
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; | |
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; | |
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; | |
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; | |
v0 = x0*d; | |
v1 = x1*d; | |
} | |
static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){ | |
const block_q5_1 * x = (const block_q5_1 *) vx; | |
const float d = x[ib].d; | |
const float m = x[ib].m; | |
uint32_t qh; | |
memcpy(&qh, x[ib].qh, sizeof(qh)); | |
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; | |
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; | |
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); | |
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); | |
v0 = x0*d + m; | |
v1 = x1*d + m; | |
} | |
static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ | |
const block_q8_0 * x = (const block_q8_0 *) vx; | |
const float d = x[ib].d; | |
const int8_t vi0 = x[ib].qs[iqs + 0]; | |
const int8_t vi1 = x[ib].qs[iqs + 1]; | |
v0 = vi0*d; | |
v1 = vi1*d; | |
} | |
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){ | |
const half * x = (const half *) vx; | |
v0 = __half2float(x[ib + 0]); | |
v1 = __half2float(x[ib + 1]); | |
} | |
template <int qk, int qr, dequantize_kernel_t dequantize_kernel> | |
static __global__ void dequantize_block(const void * vx, float * y, const int k) { | |
const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; | |
if (i >= k) { | |
return; | |
} | |
const int ib = i/qk; // block index | |
const int iqs = (i%qk)/qr; // quant index | |
const int iybs = i - i%qk; // y block start index | |
const int y_offset = qr == 1 ? 1 : qk/2; | |
// dequantize | |
float & v0 = y[iybs + iqs + 0]; | |
float & v1 = y[iybs + iqs + y_offset]; | |
dequantize_kernel(vx, ib, iqs, v0, v1); | |
} | |
template <int block_size, int qk, int qr, dequantize_kernel_t dequantize_kernel> | |
static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) { | |
const int row = blockIdx.x; | |
const int tid = threadIdx.x; | |
const int y_offset = qr == 1 ? 1 : qk/2; | |
__shared__ float tmp[block_size]; // separate sum for each thread | |
tmp[tid] = 0; | |
for (int i = 0; i < ncols/block_size; i += 2) { | |
const int col = i*block_size + 2*tid; | |
const int ib = (row*ncols + col)/qk; // block index | |
const int iqs = (col%qk)/qr; // quant index | |
const int iybs = col - col%qk; // y block start index | |
// dequantize | |
float v0, v1; | |
dequantize_kernel(vx, ib, iqs, v0, v1); | |
// matrix multiplication | |
tmp[tid] += v0 * y[iybs + iqs + 0]; | |
tmp[tid] += v1 * y[iybs + iqs + y_offset]; | |
} | |
// sum up partial sums and write back result | |
__syncthreads(); | |
for (int s=block_size/2; s>0; s>>=1) { | |
if (tid < s) { | |
tmp[tid] += tmp[tid + s]; | |
} | |
__syncthreads(); | |
} | |
if (tid == 0) { | |
dst[row] = tmp[0]; | |
} | |
} | |
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { | |
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; | |
dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); | |
} | |
static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { | |
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; | |
dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); | |
} | |
static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { | |
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; | |
dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); | |
} | |
static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { | |
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; | |
dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); | |
} | |
static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { | |
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; | |
dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); | |
} | |
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { | |
GGML_V2_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); | |
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_0, QR4_0, dequantize_q4_0> | |
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); | |
} | |
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { | |
GGML_V2_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); | |
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_1, QR4_1, dequantize_q4_1> | |
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); | |
} | |
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { | |
GGML_V2_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); | |
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_0, QR5_0, dequantize_q5_0> | |
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); | |
} | |
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { | |
GGML_V2_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); | |
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_1, QR5_1, dequantize_q5_1> | |
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); | |
} | |
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { | |
GGML_V2_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); | |
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK8_0, QR8_0, dequantize_q8_0> | |
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); | |
} | |
static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { | |
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; | |
dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); | |
} | |
static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { | |
GGML_V2_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0); | |
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, 32, 1, convert_f16> | |
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols); | |
} | |
static to_fp32_cuda_t ggml_v2_get_to_fp32_cuda(ggml_v2_type type) { | |
switch (type) { | |
case GGML_V2_TYPE_Q4_0: | |
return dequantize_row_q4_0_cuda; | |
case GGML_V2_TYPE_Q4_1: | |
return dequantize_row_q4_1_cuda; | |
case GGML_V2_TYPE_Q5_0: | |
return dequantize_row_q5_0_cuda; | |
case GGML_V2_TYPE_Q5_1: | |
return dequantize_row_q5_1_cuda; | |
case GGML_V2_TYPE_Q8_0: | |
return dequantize_row_q8_0_cuda; | |
case GGML_V2_TYPE_F16: | |
return convert_fp16_to_fp32_cuda; | |
default: | |
return nullptr; | |
} | |
} | |
static dequantize_mul_mat_vec_cuda_t ggml_v2_get_dequantize_mul_mat_vec_cuda(ggml_v2_type type) { | |
switch (type) { | |
case GGML_V2_TYPE_Q4_0: | |
return dequantize_mul_mat_vec_q4_0_cuda; | |
case GGML_V2_TYPE_Q4_1: | |
return dequantize_mul_mat_vec_q4_1_cuda; | |
case GGML_V2_TYPE_Q5_0: | |
return dequantize_mul_mat_vec_q5_0_cuda; | |
case GGML_V2_TYPE_Q5_1: | |
return dequantize_mul_mat_vec_q5_1_cuda; | |
case GGML_V2_TYPE_Q8_0: | |
return dequantize_mul_mat_vec_q8_0_cuda; | |
case GGML_V2_TYPE_F16: | |
return convert_mul_mat_vec_f16_cuda; | |
default: | |
return nullptr; | |
} | |
} | |
// buffer pool for cuda | |
struct scoped_spin_lock { | |
std::atomic_flag& lock; | |
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { | |
while (lock.test_and_set(std::memory_order_acquire)) { | |
; // spin | |
} | |
} | |
~scoped_spin_lock() { | |
lock.clear(std::memory_order_release); | |
} | |
scoped_spin_lock(const scoped_spin_lock&) = delete; | |
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; | |
}; | |
struct cuda_buffer { | |
void * ptr = nullptr; | |
size_t size = 0; | |
}; | |
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; | |
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; | |
static void * ggml_v2_cuda_pool_malloc(size_t size, size_t * actual_size) { | |
scoped_spin_lock lock(g_cuda_pool_lock); | |
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { | |
cuda_buffer& b = g_cuda_buffer_pool[i]; | |
if (b.size >= size && b.ptr != nullptr) { | |
void * ptr = b.ptr; | |
*actual_size = b.size; | |
b.ptr = nullptr; | |
b.size = 0; | |
return ptr; | |
} | |
} | |
void * ptr; | |
CUDA_CHECK(cudaMalloc((void **) &ptr, size)); | |
*actual_size = size; | |
return ptr; | |
} | |
static void ggml_v2_cuda_pool_free(void * ptr, size_t size) { | |
scoped_spin_lock lock(g_cuda_pool_lock); | |
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { | |
cuda_buffer& b = g_cuda_buffer_pool[i]; | |
if (b.ptr == nullptr) { | |
b.ptr = ptr; | |
b.size = size; | |
return; | |
} | |
} | |
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); | |
CUDA_CHECK(cudaFree(ptr)); | |
} | |
static cublasHandle_t g_cublasH = nullptr; | |
static cudaStream_t g_cudaStreams[GGML_V2_CUDA_MAX_STREAMS] = { nullptr }; | |
static cudaStream_t g_cudaStreams2[GGML_V2_CUDA_MAX_STREAMS] = { nullptr }; | |
static cudaEvent_t g_cudaEvents[GGML_V2_CUDA_MAX_EVENTS] = { nullptr }; | |
void ggml_v2_init_cublas() { | |
if (g_cublasH == nullptr) { | |
// create streams | |
for (int i = 0; i < GGML_V2_CUDA_MAX_STREAMS; ++i) { | |
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking)); | |
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking)); | |
} | |
// create events | |
for (int i = 0; i < GGML_V2_CUDA_MAX_EVENTS; ++i) { | |
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming)); | |
} | |
// create cublas handle | |
CUBLAS_CHECK(cublasCreate(&g_cublasH)); | |
CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH)); | |
// configure logging to stdout | |
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); | |
} | |
} | |
void * ggml_v2_cuda_host_malloc(size_t size) { | |
if (getenv("GGML_V2_CUDA_NO_PINNED") != nullptr) { | |
return nullptr; | |
} | |
void * ptr = nullptr; | |
cudaError_t err = cudaMallocHost((void **) &ptr, size); | |
if (err != cudaSuccess) { | |
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", | |
size/1024.0/1024.0, cudaGetErrorString(err)); | |
return nullptr; | |
} | |
return ptr; | |
} | |
void ggml_v2_cuda_host_free(void * ptr) { | |
CUDA_CHECK(cudaFreeHost(ptr)); | |
} | |
static cudaError_t ggml_v2_cuda_h2d_tensor_2d(void * dst, const struct ggml_v2_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { | |
const uint64_t ne0 = src->ne[0]; | |
const uint64_t ne1 = src->ne[1]; | |
const uint64_t nb0 = src->nb[0]; | |
const uint64_t nb1 = src->nb[1]; | |
const uint64_t nb2 = src->nb[2]; | |
const uint64_t nb3 = src->nb[3]; | |
const enum ggml_v2_type type = src->type; | |
const size_t ts = ggml_v2_type_size(type); | |
const size_t bs = ggml_v2_blck_size(type); | |
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); | |
if (nb0 == ts && nb1 == ts*ne0/bs) { | |
return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream); | |
} else if (nb0 == ts) { | |
return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream); | |
} else { | |
for (uint64_t i1 = 0; i1 < ne1; i1++) { | |
const void * rx = (const void *) ((const char *) x + i1*nb1); | |
void * rd = (void *) ((char *) dst + i1*ts*ne0/bs); | |
// pretend the row is a matrix with cols=1 | |
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream); | |
if (r != cudaSuccess) return r; | |
} | |
return cudaSuccess; | |
} | |
} | |
static void ggml_v2_cuda_mul_mat_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const float alpha = 1.0f; | |
const float beta = 0.0f; | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
const int n_mm = ne03 * ne02; | |
size_t x_size, y_size, d_size; | |
float * d_X = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); | |
float * d_Y = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); | |
float * d_D = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
int i = i03*ne02 + i02; | |
cudaStream_t cudaStream = g_cudaStreams[i % GGML_V2_CUDA_MAX_STREAMS]; | |
float * c_X = d_X + i * x_ne; | |
float * c_Y = d_Y + i * y_ne; | |
float * c_D = d_D + i * d_ne; | |
// copy data to device | |
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); | |
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); | |
// compute | |
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); | |
CUBLAS_CHECK( | |
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, | |
ne01, ne11, ne10, | |
&alpha, c_X, ne00, | |
c_Y, ne10, | |
&beta, c_D, ne01)); | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); | |
} | |
} | |
CUDA_CHECK(cudaDeviceSynchronize()); | |
ggml_v2_cuda_pool_free(d_X, x_size); | |
ggml_v2_cuda_pool_free(d_Y, y_size); | |
ggml_v2_cuda_pool_free(d_D, d_size); | |
} | |
static void ggml_v2_cuda_mul_mat_f16(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst, void * wdata, size_t /* wsize */) { | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb10 = src1->nb[0]; | |
const int nb11 = src1->nb[1]; | |
const int nb12 = src1->nb[2]; | |
const int nb13 = src1->nb[3]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const float alpha = 1.0f; | |
const float beta = 0.0f; | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
const int n_mm = ne03 * ne02; | |
size_t x_size, y_size, d_size; | |
half * d_X = (half *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size); | |
half * d_Y = (half *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size); | |
float * d_D = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); | |
bool src1_cont_rows = nb10 == sizeof(float); | |
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
int i = i03*ne02 + i02; | |
cudaStream_t cudaStream = g_cudaStreams[i % GGML_V2_CUDA_MAX_STREAMS]; | |
half * c_X = d_X + i * x_ne; | |
half * c_Y = d_Y + i * y_ne; | |
float * c_D = d_D + i * d_ne; | |
// copy src0 to device | |
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); | |
// convert src1 to fp16 | |
// TODO: use multiple threads | |
ggml_v2_fp16_t * const tmp = (ggml_v2_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); | |
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; | |
if (src1_cont_rows) { | |
if (src1_cont_cols) { | |
ggml_v2_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); | |
} | |
else { | |
for (int64_t i01 = 0; i01 < ne11; i01++) { | |
ggml_v2_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); | |
} | |
} | |
} | |
else { | |
for (int64_t i01 = 0; i01 < ne11; i01++) { | |
for (int64_t i00 = 0; i00 < ne10; i00++) { | |
// very slow due to no inlining | |
tmp[i01*ne10 + i00] = ggml_v2_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); | |
} | |
} | |
} | |
// copy src1 to device | |
CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream)); | |
// compute | |
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); | |
CUBLAS_CHECK( | |
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, | |
ne01, ne11, ne10, | |
&alpha, c_X, CUDA_R_16F, ne00, | |
c_Y, CUDA_R_16F, ne10, | |
&beta, c_D, CUDA_R_32F, ne01, | |
CUBLAS_COMPUTE_32F_FAST_16F, | |
CUBLAS_GEMM_DEFAULT)); | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); | |
} | |
} | |
CUDA_CHECK(cudaDeviceSynchronize()); | |
ggml_v2_cuda_pool_free(d_X, x_size); | |
ggml_v2_cuda_pool_free(d_Y, y_size); | |
ggml_v2_cuda_pool_free(d_D, d_size); | |
} | |
static void ggml_v2_cuda_mul_mat_q_f32(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst) { | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const ggml_v2_type type = src0->type; | |
const bool mul_mat_vec = ne11 == 1; | |
const float alpha = 1.0f; | |
const float beta = 0.0f; | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
const int n_mm = ne03 * ne02; | |
const size_t q_sz = ggml_v2_type_size(type) * x_ne / ggml_v2_blck_size(type); | |
size_t x_size, y_size, d_size, q_size; | |
float * d_X = nullptr; | |
if (!mul_mat_vec) { | |
d_X = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); | |
} | |
float * d_Y = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); | |
float * d_D = (float *) ggml_v2_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); | |
char * d_Q = (char *) ggml_v2_cuda_pool_malloc(n_mm * q_sz, &q_size); | |
const to_fp32_cuda_t to_fp32_cuda = ggml_v2_get_to_fp32_cuda(type); | |
dequantize_mul_mat_vec_cuda_t dmmv = ggml_v2_get_dequantize_mul_mat_vec_cuda(type); | |
GGML_V2_ASSERT(to_fp32_cuda != nullptr); | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
int i = i03*ne02 + i02; | |
cudaStream_t cudaStream = g_cudaStreams[i % GGML_V2_CUDA_MAX_STREAMS]; | |
cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_V2_CUDA_MAX_STREAMS]; | |
cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_V2_CUDA_MAX_EVENTS]; | |
float * c_Y = d_Y + i * y_ne; | |
float * c_D = d_D + i * d_ne; | |
char * c_Q = d_Q + i * q_sz; | |
// copy src0 to device if necessary | |
if (src0->backend == GGML_V2_BACKEND_CPU) { | |
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2)); | |
} else if (src0->backend == GGML_V2_BACKEND_CUDA) { | |
c_Q = ((char *) src0->data) + i * q_sz; | |
} else { | |
GGML_V2_ASSERT(false); | |
} | |
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel | |
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); | |
// copy src1 to device | |
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); | |
// wait for data | |
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); | |
// compute | |
dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream); | |
CUDA_CHECK(cudaGetLastError()); | |
} else { // general dequantization kernel + cuBLAS matrix matrix multiplication | |
float * c_X = d_X + i * x_ne; | |
// convert src0 to fp32 on device | |
to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2); | |
CUDA_CHECK(cudaGetLastError()); | |
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); | |
// copy src1 to device | |
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); | |
// wait for conversion | |
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); | |
// compute | |
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); | |
CUBLAS_CHECK( | |
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, | |
ne01, ne11, ne10, | |
&alpha, c_X, ne00, | |
c_Y, ne10, | |
&beta, c_D, ne01)); | |
} | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); | |
} | |
} | |
CUDA_CHECK(cudaDeviceSynchronize()); | |
if (!mul_mat_vec) { | |
ggml_v2_cuda_pool_free(d_X, x_size); | |
} | |
ggml_v2_cuda_pool_free(d_Y, y_size); | |
ggml_v2_cuda_pool_free(d_D, d_size); | |
ggml_v2_cuda_pool_free(d_Q, q_size); | |
} | |
bool ggml_v2_cuda_can_mul_mat(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) { | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne0 = dst->ne[0]; | |
const int64_t ne1 = dst->ne[1]; | |
// TODO: find the optimal values for these | |
if ((src0->type == GGML_V2_TYPE_F32 || src0->type == GGML_V2_TYPE_F16 || ggml_v2_is_quantized(src0->type)) && | |
src1->type == GGML_V2_TYPE_F32 && | |
dst->type == GGML_V2_TYPE_F32 && | |
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_V2_BACKEND_CUDA)) { | |
return true; | |
} | |
return false; | |
} | |
bool ggml_v2_cuda_mul_mat_use_f16(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * /* dst */) { | |
size_t src0_sz = ggml_v2_nbytes(src0); | |
size_t src1_sz = ggml_v2_nbytes(src1); | |
// mul_mat_q: src0 is converted to fp32 on device | |
size_t mul_mat_q_transfer = src0_sz + src1_sz; | |
// mul_mat_f16: src1 is converted to fp16 on cpu | |
size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_v2_nelements(src1); | |
// choose the smaller one to transfer to the device | |
// TODO: this is not always the best choice due to the overhead of converting to fp16 | |
return mul_mat_f16_transfer < mul_mat_q_transfer; | |
} | |
void ggml_v2_cuda_mul_mat(const ggml_v2_tensor * src0, const ggml_v2_tensor * src1, ggml_v2_tensor * dst, void * wdata, size_t wsize) { | |
GGML_V2_ASSERT(ggml_v2_cuda_can_mul_mat(src0, src1, dst)); | |
if (src0->type == GGML_V2_TYPE_F32) { | |
ggml_v2_cuda_mul_mat_f32(src0, src1, dst); | |
} | |
else if (src0->type == GGML_V2_TYPE_F16) { | |
if (ggml_v2_cuda_mul_mat_use_f16(src0, src1, dst)) { | |
ggml_v2_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize); | |
} | |
else { | |
ggml_v2_cuda_mul_mat_q_f32(src0, src1, dst); | |
} | |
} | |
else if (ggml_v2_is_quantized(src0->type)) { | |
ggml_v2_cuda_mul_mat_q_f32(src0, src1, dst); | |
} | |
else { | |
GGML_V2_ASSERT(false); | |
} | |
} | |
size_t ggml_v2_cuda_mul_mat_get_wsize(const struct ggml_v2_tensor * src0, const struct ggml_v2_tensor * src1, struct ggml_v2_tensor * dst) { | |
if (ggml_v2_cuda_mul_mat_use_f16(src0, src1, dst)) { | |
return ggml_v2_nelements(src1) * sizeof(ggml_v2_fp16_t); | |
} | |
else { | |
return 0; | |
} | |
} | |
void ggml_v2_cuda_transform_tensor(ggml_v2_tensor * tensor) { | |
const int64_t ne0 = tensor->ne[0]; | |
const int64_t ne1 = tensor->ne[1]; | |
const int64_t ne2 = tensor->ne[2]; | |
const int64_t ne3 = tensor->ne[3]; | |
const ggml_v2_type type = tensor->type; | |
const size_t q_sz = ggml_v2_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_v2_blck_size(type); | |
size_t q_size; | |
char * d_Q = (char *) ggml_v2_cuda_pool_malloc(q_sz, &q_size); | |
cudaStream_t cudaStream2 = g_cudaStreams2[0]; | |
// copy tensor to device | |
CUDA_CHECK(ggml_v2_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2)); | |
CUDA_CHECK(cudaDeviceSynchronize()); | |
tensor->data = d_Q; | |
tensor->backend = GGML_V2_BACKEND_CUDA; | |
} | |