Spaces:
Build error
Build error
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { | |
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); | |
if (plan.work_size > 0) { | |
buf.resize(plan.work_size); | |
plan.work_data = buf.data(); | |
} | |
ggml_graph_compute(graph, &plan); | |
} | |
static float tensor_sum_elements(const ggml_tensor * tensor) { | |
double sum = 0; | |
if (tensor->type == GGML_TYPE_F32) { | |
for (int j = 0; j < tensor->ne[1]; j++) { | |
for (int k = 0; k < tensor->ne[0]; k++) { | |
sum += ((float *) tensor->data)[j*tensor->ne[0] + k]; | |
} | |
} | |
} | |
return sum; | |
} | |
static void tensor_dump(const ggml_tensor * tensor, const char * name) { | |
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name, | |
tensor->type, ggml_type_name(tensor->type), | |
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]); | |
float sum = tensor_sum_elements(tensor); | |
printf("Sum of tensor %s is %6.2f\n", name, sum); | |
} | |
struct benchmark_params_struct { | |
int32_t n_threads = 1; | |
int32_t n_iterations = 10; | |
}; | |
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { | |
fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "options:\n"); | |
fprintf(stderr, " -h, --help show this help message and exit\n"); | |
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); | |
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations); | |
fprintf(stderr, "\n"); | |
} | |
int main(int argc, char ** argv) { | |
struct benchmark_params_struct benchmark_params; | |
bool invalid_param = false; | |
std::string arg; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
benchmark_params.n_threads = std::stoi(argv[i]); | |
} else if (arg == "-i" || arg == "--iter") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
benchmark_params.n_iterations = std::stoi(argv[i]); | |
} else if (arg == "-h" || arg == "--help") { | |
print_usage(argc, argv, benchmark_params); | |
exit(0); | |
} | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
print_usage(argc, argv, benchmark_params); | |
exit(1); | |
} | |
print_build_info(); | |
printf("Starting Test\n"); | |
// create the ggml context | |
struct ggml_context * ctx; | |
//const int sizex = 4096; | |
//const int sizey = 11008; | |
const int sizey = 4096; | |
const int sizex = 11008; | |
const int sizez = 128; | |
/* Working - let's increase size */ | |
const int sizey = 1; | |
const int sizex = (8*32); | |
const int sizez = 1; | |
/*const int sizey = 1; | |
const int sizex = 3*(8*32); | |
const int sizez = 1;*/ | |
//printf("Memsize required = %i\n", sizex*sizex); | |
// TODO: perform the bench for all types or for a user specified type | |
const ggml_type qtype = GGML_TYPE_Q4_1; | |
size_t ctx_size = 0; | |
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); | |
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); | |
ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32); | |
ctx_size += sizex*sizey*ggml_type_sizef(qtype); | |
ctx_size += sizex*sizey*ggml_type_sizef(qtype); | |
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS | |
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS | |
ctx_size += 1024*1024*16; | |
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024)); | |
struct ggml_init_params params = { | |
/*.mem_size =*/ ctx_size, | |
/*.mem_buffer =*/ NULL, | |
/* no_alloc =*/ 0 | |
}; | |
ctx = ggml_init(params); | |
if (!ctx) { | |
fprintf(stderr, "%s: ggml_init() failed\n", __func__); | |
return 1; | |
} | |
printf("Creating new tensors\n"); | |
// printf("Creating new tensor m1\n"); | |
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); | |
ggml_set_f32(m11, 1.0f); | |
// printf("Creating new tensor m1\n"); | |
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); | |
ggml_set_f32(m12, 1.5f); | |
// printf("Creating new tensor m2\n"); | |
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); | |
ggml_set_f32(m2, 2.0f); | |
printf("\n------ Test 1 - Matrix Mult via F32 code\n"); | |
// printf("Creating new tensor m11xm2\n"); | |
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); | |
// printf("Creating compute graph\n"); | |
struct ggml_cgraph gf = ggml_build_forward(m11xm2); | |
printf("n_threads=%i\n", benchmark_params.n_threads); | |
TENSOR_DUMP(m11); | |
TENSOR_DUMP(m2); | |
std::vector<uint8_t> work_buffer; | |
ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads); | |
TENSOR_DUMP(gf.nodes[0]); | |
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype)); | |
int32_t nelements = sizex*sizey; | |
std::vector<int64_t> hist_cur(1 << 4, 0); | |
// Set up a the benchmark matrices | |
// printf("Creating new tensor q11 & Running quantize\n"); | |
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); | |
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data()); | |
// Set up a the compute graph | |
// printf("Creating new tensor q31\n"); | |
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); | |
// printf("Creating compute graph\n"); | |
struct ggml_cgraph gf31 = ggml_build_forward(q31); | |
// Set up a second graph computation to make sure we override the CPU cache lines | |
// printf("Creating new tensor q12 & Running quantize\n"); | |
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); | |
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data()); | |
// printf("Creating new tensor q32\n"); | |
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); | |
//printf("Creating compute graph\n"); | |
struct ggml_cgraph gf32 = ggml_build_forward(q32); | |
printf("n_threads=%i\n", benchmark_params.n_threads); | |
const int dimx = sizex; | |
const int dimy = sizey; | |
const int dimz = sizez; | |
long long int flops_per_dot_product = dimy + dimy; | |
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; | |
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); | |
// Let's use the F32 result from above as a reference for the quantized multiplication | |
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); | |
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n"); | |
printf("=====================================================================================\n"); | |
double gflops_sum = 0; | |
for (int i=0;i<benchmark_params.n_iterations ;i++) { | |
long long int start = ggml_time_us(); | |
//printf("Running ggml_graph_compute\n"); | |
ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads); | |
long long int stop = ggml_time_us(); | |
long long int usec = stop-start; | |
double gflops = (double)(flops_per_matrix)/usec/1000.0; | |
gflops_sum += gflops; | |
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n", | |
i, | |
benchmark_params.n_threads, | |
sizex, sizey, sizez, flops_per_matrix, | |
usec,gflops); | |
TENSOR_DUMP("res",gf31.nodes[0]) | |
// Check that the matrix multiplication result is in the right ballpark | |
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different | |
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]); | |
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference); | |
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6 | |
if (delta > allowed_delta) { | |
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n", | |
sum_of_F32_reference, | |
sum_of_Q4_result, | |
delta, | |
allowed_delta | |
); | |
exit(0); | |
} | |
// Running a different graph computation to make sure we override the CPU cache lines | |
ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads); | |
} | |
printf("\n"); | |
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations)); | |
printf("=====================================================================================\n"); | |
} | |