Spaces:
Build error
Build error
// mutates the input string | |
static std::vector<int> parse_list(char * p) { | |
std::vector<int> ret; | |
char * q = p; | |
while (*p) { | |
if (*p == ',') { | |
*p = '\0'; | |
ret.push_back(std::atoi(q)); | |
q = p + 1; | |
} | |
++p; | |
} | |
ret.push_back(std::atoi(q)); | |
return ret; | |
} | |
int main(int argc, char ** argv) { | |
gpt_params params; | |
if (argc == 1 || argv[1][0] == '-') { | |
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]); | |
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n"); | |
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); | |
return 1 ; | |
} | |
int n_kv_max = 2048; | |
int is_pp_shared = 0; | |
int n_gpu_layers = 0; | |
int mmq = 0; | |
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, }; | |
std::vector<int> n_tg = { 128, 256, }; | |
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, }; | |
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, }; | |
if (argc >= 2) { | |
params.model = argv[1]; | |
} | |
if (argc >= 3) { | |
n_kv_max = std::atoi(argv[2]); | |
} | |
if (argc >= 4) { | |
is_pp_shared = std::atoi(argv[3]); | |
} | |
if (argc >= 5) { | |
n_gpu_layers = std::atoi(argv[4]); | |
} | |
if (argc >= 6) { | |
mmq = std::atoi(argv[5]); | |
} | |
if (argc >= 7) { | |
n_pp = parse_list(argv[6]); | |
} | |
if (argc >= 8) { | |
n_tg = parse_list(argv[7]); | |
} | |
if (argc >= 9) { | |
n_pl = parse_list(argv[8]); | |
} | |
// init LLM | |
llama_backend_init(params.numa); | |
// initialize the model | |
llama_model_params model_params = llama_model_default_params(); | |
model_params.n_gpu_layers = n_gpu_layers; | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); | |
if (model == NULL) { | |
fprintf(stderr , "%s: error: unable to load model\n" , __func__); | |
return 1; | |
} | |
llama_context_params ctx_params = llama_context_default_params(); | |
ctx_params.seed = 1234; | |
ctx_params.n_ctx = n_kv_max; | |
ctx_params.n_batch = 512; | |
ctx_params.mul_mat_q = mmq; | |
ctx_params.n_threads = params.n_threads; | |
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; | |
llama_context * ctx = llama_new_context_with_model(model, ctx_params); | |
if (ctx == NULL) { | |
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); | |
return 1; | |
} | |
llama_batch batch = llama_batch_init(n_kv_max, 0); | |
// decode in batches of ctx_params.n_batch tokens | |
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) { | |
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { | |
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); | |
llama_batch batch_view = { | |
n_tokens, | |
batch.token + i, | |
nullptr, | |
batch.pos + i, | |
batch.seq_id + i, | |
batch.logits + i, | |
0, 0, 0, // unused | |
}; | |
const int ret = llama_decode(ctx, batch_view); | |
if (ret != 0) { | |
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); | |
return false; | |
} | |
} | |
return true; | |
}; | |
// warm up | |
{ | |
batch.n_tokens = 16; | |
for (int i = 0; i < batch.n_tokens; ++i) { | |
batch.token[i] = 0; | |
batch.pos[i] = i; | |
batch.seq_id[i] = 0; | |
batch.logits[i] = false; | |
} | |
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | |
LOG_TEE("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
} | |
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); | |
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------"); | |
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) { | |
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) { | |
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) { | |
const int pp = n_pp[i_pp]; | |
const int tg = n_tg[i_tg]; | |
const int pl = n_pl[i_pl]; | |
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg); | |
if (n_ctx_req > n_kv_max) { | |
continue; | |
} | |
batch.n_tokens = is_pp_shared ? pp : pl*pp; | |
for (int i = 0; i < batch.n_tokens; ++i) { | |
batch.token[i] = 0; | |
batch.pos[i] = i; | |
batch.seq_id[i] = 0; | |
batch.logits[i] = false; | |
} | |
batch.logits[batch.n_tokens - 1] = true; | |
const auto t_pp_start = ggml_time_us(); | |
llama_kv_cache_tokens_rm(ctx, -1, -1); | |
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | |
LOG_TEE("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
if (is_pp_shared) { | |
for (int32_t i = 1; i < pl; ++i) { | |
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp); | |
} | |
} | |
const auto t_pp_end = ggml_time_us(); | |
const auto t_tg_start = ggml_time_us(); | |
for (int i = 0; i < tg; ++i) { | |
batch.n_tokens = pl; | |
for (int j = 0; j < pl; ++j) { | |
batch.token[j] = 0; | |
batch.pos[j] = pp + i; | |
batch.seq_id[j] = j; | |
batch.logits[j] = true; | |
} | |
if (!decode_helper(ctx, batch, ctx_params.n_batch)) { | |
LOG_TEE("%s: llama_decode() failed\n", __func__); | |
return 1; | |
} | |
} | |
const auto t_tg_end = ggml_time_us(); | |
const int32_t n_kv = n_ctx_req; | |
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; | |
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; | |
const float t = t_pp + t_tg; | |
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp; | |
const float speed_tg = pl*tg / t_tg; | |
const float speed = n_kv / t; | |
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); | |
} | |
} | |
} | |
llama_print_timings(ctx); | |
llama_batch_free(batch); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
fprintf(stderr, "\n\n"); | |
return 0; | |
} | |