Spaces:
Build error
Build error
//#define GGML_ALLOCATOR_DEBUG | |
//#define AT_PRINTF printf | |
struct hash_node { | |
struct ggml_tensor * t; | |
int n_children; | |
int n_views; | |
}; | |
static size_t hash(void * p) { | |
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; | |
} | |
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) { | |
size_t h = hash(t); | |
// linear probing | |
size_t i = h; | |
while (hash_table[i].t != NULL) { | |
if (hash_table[i].t == t) { | |
return &hash_table[i]; | |
} | |
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; | |
if (i == h) { | |
// hash table is full | |
GGML_ASSERT(false); | |
} | |
} | |
hash_table[i].t = t; | |
return &hash_table[i]; | |
} | |
// TODO: GGML_PAD ? | |
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { | |
assert(alignment && !(alignment & (alignment - 1))); // power of 2 | |
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; | |
return offset + align; | |
} | |
struct free_block { | |
void * addr; | |
size_t size; | |
}; | |
struct ggml_allocr { | |
void * data; | |
size_t size; | |
size_t alignment; | |
int n_free_blocks; | |
struct free_block free_blocks[MAX_FREE_BLOCKS]; | |
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE]; | |
size_t max_size; | |
bool measure; | |
int parse_seq[GGML_MAX_CONCUR]; | |
int parse_seq_len; | |
struct ggml_tensor * allocated_tensors[1024]; | |
}; | |
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
for (int i = 0; i < 1024; i++) { | |
if (alloc->allocated_tensors[i] == NULL) { | |
alloc->allocated_tensors[i] = tensor; | |
return; | |
} | |
} | |
GGML_ASSERT(!"out of allocated_tensors"); | |
} | |
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
for (int i = 0; i < 1024; i++) { | |
if (alloc->allocated_tensors[i] == tensor || | |
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { | |
alloc->allocated_tensors[i] = NULL; | |
return; | |
} | |
} | |
printf("tried to free tensor %s not found\n", tensor->name); | |
GGML_ASSERT(!"tensor not found"); | |
} | |
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
return ggml_nbytes(tensor); | |
UNUSED(alloc); | |
} | |
// check if a tensor is allocated by this buffer | |
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) { | |
void * ptr = tensor->data; | |
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size; | |
} | |
static bool ggml_is_view(struct ggml_tensor * t) { | |
return t->view_src != NULL; | |
} | |
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources | |
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated | |
size_t size = ggml_allocr_get_alloc_size(alloc, tensor); | |
size = aligned_offset(NULL, size, alloc->alignment); | |
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); | |
size_t max_avail = 0; | |
// find the best fitting free block besides the last block | |
int best_fit_block = -1; | |
size_t best_fit_size = SIZE_MAX; | |
for (int i = 0; i < alloc->n_free_blocks - 1; i++) { | |
struct free_block * block = &alloc->free_blocks[i]; | |
max_avail = MAX(max_avail, block->size); | |
if (block->size >= size && block->size <= best_fit_size) { | |
best_fit_block = i; | |
best_fit_size = block->size; | |
} | |
} | |
AT_PRINTF("block %d\n", best_fit_block); | |
if (best_fit_block == -1) { | |
// the last block is our last resort | |
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; | |
max_avail = MAX(max_avail, block->size); | |
if (block->size >= size) { | |
best_fit_block = alloc->n_free_blocks - 1; | |
} else { | |
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", | |
__func__, size, max_avail); | |
GGML_ASSERT(!"not enough space in the buffer"); | |
return; | |
} | |
} | |
struct free_block * block = &alloc->free_blocks[best_fit_block]; | |
void * addr = block->addr; | |
block->addr = (char*)block->addr + size; | |
block->size -= size; | |
if (block->size == 0) { | |
// remove block if empty | |
alloc->n_free_blocks--; | |
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { | |
alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
} | |
} | |
tensor->data = addr; | |
add_allocated_tensor(alloc, tensor); | |
size_t cur_max = (char*)addr - (char*)alloc->data + size; | |
if (cur_max > alloc->max_size) { | |
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); | |
for (int i = 0; i < 1024; i++) { | |
if (alloc->allocated_tensors[i]) { | |
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0); | |
} | |
} | |
printf("\n"); | |
} | |
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size); | |
} | |
// this is a very naive implementation, but for our case the number of free blocks should be very small | |
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { | |
void * ptr = tensor->data; | |
if (ggml_allocr_is_own(alloc, tensor) == false) { | |
// the tensor was not allocated in this buffer | |
// this can happen because the graph allocator will try to free weights and other tensors from different buffers | |
// the easiest way to deal with this is just to ignore it | |
return; | |
} | |
size_t size = ggml_allocr_get_alloc_size(alloc, tensor); | |
size = aligned_offset(NULL, size, alloc->alignment); | |
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); | |
remove_allocated_tensor(alloc, tensor); | |
// see if we can merge with an existing block | |
for (int i = 0; i < alloc->n_free_blocks; i++) { | |
struct free_block * block = &alloc->free_blocks[i]; | |
// check if ptr is at the end of the block | |
if ((char*)block->addr + block->size == ptr) { | |
block->size += size; | |
// check if we can merge with the next block | |
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) { | |
block->size += alloc->free_blocks[i+1].size; | |
alloc->n_free_blocks--; | |
for (int j = i+1; j < alloc->n_free_blocks; j++) { | |
alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
} | |
} | |
return; | |
} | |
// check if ptr is at the beginning of the block | |
if ((char*)ptr + size == block->addr) { | |
block->addr = ptr; | |
block->size += size; | |
// check if we can merge with the previous block | |
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) { | |
alloc->free_blocks[i-1].size += block->size; | |
alloc->n_free_blocks--; | |
for (int j = i; j < alloc->n_free_blocks; j++) { | |
alloc->free_blocks[j] = alloc->free_blocks[j+1]; | |
} | |
} | |
return; | |
} | |
} | |
// otherwise, add a new block | |
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); | |
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) | |
int insert_pos = 0; | |
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) { | |
insert_pos++; | |
} | |
// shift all blocks from insert_pos onward to make room for the new block | |
for (int i = alloc->n_free_blocks; i > insert_pos; i--) { | |
alloc->free_blocks[i] = alloc->free_blocks[i-1]; | |
} | |
// insert the new block | |
alloc->free_blocks[insert_pos].addr = ptr; | |
alloc->free_blocks[insert_pos].size = size; | |
alloc->n_free_blocks++; | |
} | |
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) { | |
for (int i = 0; i < n; i++) { | |
alloc->parse_seq[i] = list[i]; | |
} | |
alloc->parse_seq_len = n; | |
} | |
void ggml_allocr_reset(struct ggml_allocr * alloc) { | |
alloc->n_free_blocks = 1; | |
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); | |
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset; | |
alloc->free_blocks[0].size = alloc->size - align_offset; | |
} | |
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) { | |
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); | |
*alloc = (struct ggml_allocr){ | |
/*.data = */ data, | |
/*.size = */ size, | |
/*.alignment = */ alignment, | |
/*.n_free_blocks = */ 0, | |
/*.free_blocks = */ {{0}}, | |
/*.hash_table = */ {{0}}, | |
/*.max_size = */ 0, | |
/*.measure = */ false, | |
/*.parse_seq = */ {0}, | |
/*.parse_seq_len = */ 0, | |
/*.allocated_tensors = */ {0}, | |
}; | |
ggml_allocr_reset(alloc); | |
return alloc; | |
} | |
// OS specific functions to allocate and free uncommitted virtual memory | |
static void * alloc_vmem(size_t size) { | |
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); | |
void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); | |
if (ptr == MAP_FAILED) { | |
return NULL; | |
} | |
return ptr; | |
// use a fixed address for other platforms | |
uintptr_t base_addr = (uintptr_t)-size - 0x100; | |
return (void *)base_addr; | |
} | |
static void free_vmem(void * base_addr, size_t size) { | |
VirtualFree(base_addr, 0, MEM_RELEASE); | |
UNUSED(size); | |
munmap(base_addr, size); | |
// nothing to do | |
UNUSED(base_addr); | |
UNUSED(size); | |
} | |
// allocate uncommitted virtual memory to measure the size of the graph | |
static void alloc_measure_vmem(void ** base_addr, size_t * size) { | |
// 128GB for 64-bit, 1GB for 32-bit | |
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37; | |
do { | |
*base_addr = alloc_vmem(*size); | |
if (*base_addr != NULL) { | |
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr); | |
return; | |
} | |
// try again with half the size | |
*size /= 2; | |
} while (*size > 0); | |
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer"); | |
} | |
static void free_measure_vmem(void * base_addr, size_t size) { | |
free_vmem(base_addr, size); | |
} | |
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { | |
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); | |
void * base_addr; | |
size_t size; | |
alloc_measure_vmem(&base_addr, &size); | |
*alloc = (struct ggml_allocr){ | |
/*.data = */ base_addr, | |
/*.size = */ size, | |
/*.alignment = */ alignment, | |
/*.n_free_blocks = */ 0, | |
/*.free_blocks = */ {{0}}, | |
/*.hash_table = */ {{0}}, | |
/*.max_size = */ 0, | |
/*.measure = */ true, | |
/*.parse_seq = */ {0}, | |
/*.parse_seq_len = */ 0, | |
/*.allocated_tensors = */ {0}, | |
}; | |
ggml_allocr_reset(alloc); | |
return alloc; | |
} | |
void ggml_allocr_free(struct ggml_allocr * alloc) { | |
if (alloc->measure) { | |
free_measure_vmem(alloc->data, alloc->size); | |
} | |
free(alloc); | |
} | |
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) { | |
return alloc->measure; | |
} | |
//////////// compute graph allocator | |
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | |
if (a->type != b->type) { | |
return false; | |
} | |
for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
if (a->ne[i] != b->ne[i]) { | |
return false; | |
} | |
if (a->nb[i] != b->nb[i]) { | |
return false; | |
} | |
} | |
return true; | |
} | |
static bool ggml_op_can_inplace(enum ggml_op op) { | |
switch (op) { | |
case GGML_OP_SCALE: | |
case GGML_OP_DIAG_MASK_ZERO: | |
case GGML_OP_DIAG_MASK_INF: | |
case GGML_OP_ADD: | |
case GGML_OP_ADD1: | |
case GGML_OP_SUB: | |
case GGML_OP_MUL: | |
case GGML_OP_DIV: | |
case GGML_OP_SQR: | |
case GGML_OP_SQRT: | |
case GGML_OP_LOG: | |
case GGML_OP_UNARY: | |
case GGML_OP_ROPE: | |
case GGML_OP_RMS_NORM: | |
case GGML_OP_SOFT_MAX: | |
case GGML_OP_CONT: | |
return true; | |
default: | |
return false; | |
} | |
} | |
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) { | |
struct hash_node * ht = alloc->hash_table; | |
if (node->data == NULL) { | |
if (ggml_is_view(node)) { | |
assert(node->view_src->data != NULL); | |
node->data = (char *)node->view_src->data + node->view_offs; | |
} else { | |
// see if we can reuse a parent's buffer (inplace) | |
if (ggml_op_can_inplace(node->op)) { | |
for (int i = 0; i < GGML_MAX_SRC; i++) { | |
struct ggml_tensor * parent = node->src[i]; | |
if (parent == NULL) { | |
break; | |
} | |
// if the node's data is external, then we cannot re-use it | |
if (ggml_allocr_is_own(alloc, parent) == false) { | |
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); | |
continue; | |
} | |
struct hash_node * p_hn = hash_get(ht, parent); | |
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { | |
if (ggml_is_view(parent)) { | |
struct ggml_tensor * view_src = parent->view_src; | |
struct hash_node * view_src_hn = hash_get(ht, view_src); | |
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { | |
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite | |
// the parent's data that it will need later (same layout requirement). the problem is that then | |
// we cannot free the tensor because the original address of the allocation is lost. | |
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views | |
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) | |
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); | |
node->data = parent->data; | |
return; | |
} | |
} | |
else { | |
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); | |
node->data = parent->data; | |
return; | |
} | |
} | |
} | |
} | |
ggml_allocr_alloc(alloc, node); | |
} | |
} | |
} | |
static size_t ggml_allocr_alloc_graph_tensors_n( | |
struct ggml_allocr * alloc, | |
struct ggml_cgraph ** graphs, int n_graphs, | |
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) { | |
// reset hash table | |
struct hash_node * ht = alloc->hash_table; | |
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE); | |
// count number of children and views | |
for (int g = 0; g < n_graphs; g++) { | |
struct ggml_cgraph * gf = graphs[g]; | |
for (int i = 0; i < gf->n_nodes; i++) { | |
struct ggml_tensor * node = gf->nodes[i]; | |
if (ggml_is_view(node)) { | |
struct ggml_tensor * view_src = node->view_src; | |
hash_get(ht, view_src)->n_views += 1; | |
} | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * parent = node->src[j]; | |
if (parent == NULL) { | |
break; | |
} | |
hash_get(ht, parent)->n_children += 1; | |
} | |
} | |
} | |
// allocate tensors | |
for (int g = 0; g < n_graphs; g++) { | |
struct ggml_cgraph * gf = graphs[g]; | |
AT_PRINTF("####### graph %d/%d\n", g, n_graphs); | |
// graph inputs are allocated first to ensure that they are not overwritten by each other | |
if (inputs != NULL && inputs[g] != NULL) { | |
for (int i = 0; inputs[g][i] != NULL; i++) { | |
struct ggml_tensor * input = inputs[g][i]; | |
AT_PRINTF("input: %s\n", input->name); | |
allocate_node(alloc, input); | |
} | |
} | |
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers | |
int last_barrier_pos = 0; | |
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes; | |
for (int ind = 0; ind < n_nodes; ind++) { | |
// allocate a node if there is no parse_seq or this is not a barrier | |
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) { | |
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind; | |
struct ggml_tensor * node = gf->nodes[i]; | |
// allocate parents (leafs) | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * parent = node->src[j]; | |
if (parent == NULL) { | |
break; | |
} | |
allocate_node(alloc, parent); | |
} | |
// allocate node | |
allocate_node(alloc, node); | |
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * parent = node->src[j]; | |
if (parent == NULL) { | |
break; | |
} | |
AT_PRINTF("%s", parent->name); | |
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { | |
AT_PRINTF(", "); | |
} | |
} | |
AT_PRINTF("\n"); | |
} | |
// update parents | |
// update immediately if there is no parse_seq | |
// update only at barriers if there is parse_seq | |
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) { | |
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind; | |
int update_end = alloc->parse_seq_len ? ind : ind + 1; | |
for (int i = update_start; i < update_end; i++) { | |
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i; | |
struct ggml_tensor * node = gf->nodes[node_i]; | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
struct ggml_tensor * parent = node->src[j]; | |
if (parent == NULL) { | |
break; | |
} | |
struct hash_node * p_hn = hash_get(ht, parent); | |
p_hn->n_children -= 1; | |
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views); | |
if (p_hn->n_children == 0 && p_hn->n_views == 0) { | |
if (ggml_is_view(parent)) { | |
struct ggml_tensor * view_src = parent->view_src; | |
struct hash_node * view_src_hn = hash_get(ht, view_src); | |
view_src_hn->n_views -= 1; | |
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); | |
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) { | |
ggml_allocr_free_tensor(alloc, view_src); | |
} | |
} | |
else { | |
if (parent->data != node->data) { | |
ggml_allocr_free_tensor(alloc, parent); | |
} | |
} | |
} | |
} | |
} | |
AT_PRINTF("\n"); | |
if (alloc->parse_seq_len) { | |
last_barrier_pos = ind + 1; | |
} | |
} | |
} | |
// free graph outputs here that wouldn't be freed otherwise because they have no children | |
if (outputs != NULL && outputs[g] != NULL) { | |
for (int i = 0; outputs[g][i] != NULL; i++) { | |
struct ggml_tensor * output = outputs[g][i]; | |
AT_PRINTF("output: %s\n", output->name); | |
ggml_allocr_free_tensor(alloc, output); | |
} | |
} | |
} | |
return alloc->max_size; | |
} | |
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { | |
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); | |
} | |