Spaces:
Build error
Build error
int32_t get_num_physical_cores() { | |
// enumerate the set of thread siblings, num entries is num cores | |
std::unordered_set<std::string> siblings; | |
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { | |
std::ifstream thread_siblings("/sys/devices/system/cpu" | |
+ std::to_string(cpu) + "/topology/thread_siblings"); | |
if (!thread_siblings.is_open()) { | |
break; // no more cpus | |
} | |
std::string line; | |
if (std::getline(thread_siblings, line)) { | |
siblings.insert(line); | |
} | |
} | |
if (!siblings.empty()) { | |
return static_cast<int32_t>(siblings.size()); | |
} | |
int32_t num_physical_cores; | |
size_t len = sizeof(num_physical_cores); | |
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); | |
if (result == 0) { | |
return num_physical_cores; | |
} | |
//TODO: Implement | |
unsigned int n_threads = std::thread::hardware_concurrency(); | |
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; | |
} | |
static void process_escapes(std::string& input) { | |
std::size_t input_len = input.length(); | |
std::size_t output_idx = 0; | |
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { | |
if (input[input_idx] == '\\' && input_idx + 1 < input_len) { | |
switch (input[++input_idx]) { | |
case 'n': input[output_idx++] = '\n'; break; | |
case 'r': input[output_idx++] = '\r'; break; | |
case 't': input[output_idx++] = '\t'; break; | |
case '\'': input[output_idx++] = '\''; break; | |
case '\"': input[output_idx++] = '\"'; break; | |
case '\\': input[output_idx++] = '\\'; break; | |
default: input[output_idx++] = '\\'; | |
input[output_idx++] = input[input_idx]; break; | |
} | |
} else { | |
input[output_idx++] = input[input_idx]; | |
} | |
} | |
input.resize(output_idx); | |
} | |
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { | |
bool invalid_param = false; | |
std::string arg; | |
gpt_params default_params; | |
const std::string arg_prefix = "--"; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg == "-s" || arg == "--seed") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.seed = std::stoul(argv[i]); | |
} else if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_threads = std::stoi(argv[i]); | |
if (params.n_threads <= 0) { | |
params.n_threads = std::thread::hardware_concurrency(); | |
} | |
} else if (arg == "-p" || arg == "--prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.prompt = argv[i]; | |
} else if (arg == "-e" || arg == "--escape") { | |
params.escape = true; | |
} else if (arg == "--prompt-cache") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.path_prompt_cache = argv[i]; | |
} else if (arg == "--prompt-cache-all") { | |
params.prompt_cache_all = true; | |
} else if (arg == "--prompt-cache-ro") { | |
params.prompt_cache_ro = true; | |
} else if (arg == "-f" || arg == "--file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
break; | |
} | |
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt)); | |
if (params.prompt.back() == '\n') { | |
params.prompt.pop_back(); | |
} | |
} else if (arg == "-n" || arg == "--n-predict") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_predict = std::stoi(argv[i]); | |
} else if (arg == "--top-k") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.top_k = std::stoi(argv[i]); | |
} else if (arg == "-c" || arg == "--ctx-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_ctx = std::stoi(argv[i]); | |
} else if (arg == "--rope-freq-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_base = std::stof(argv[i]); | |
} else if (arg == "--rope-freq-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_scale = std::stof(argv[i]); | |
} else if (arg == "--rope-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_scale = 1.0f/std::stof(argv[i]); | |
} else if (arg == "--memory-f32") { | |
params.memory_f16 = false; | |
} else if (arg == "--top-p") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.top_p = std::stof(argv[i]); | |
} else if (arg == "--temp") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.temp = std::stof(argv[i]); | |
} else if (arg == "--tfs") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.tfs_z = std::stof(argv[i]); | |
} else if (arg == "--typical") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.typical_p = std::stof(argv[i]); | |
} else if (arg == "--repeat-last-n") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.repeat_last_n = std::stoi(argv[i]); | |
} else if (arg == "--repeat-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.repeat_penalty = std::stof(argv[i]); | |
} else if (arg == "--frequency-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.frequency_penalty = std::stof(argv[i]); | |
} else if (arg == "--presence-penalty") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.presence_penalty = std::stof(argv[i]); | |
} else if (arg == "--mirostat") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.mirostat = std::stoi(argv[i]); | |
} else if (arg == "--mirostat-lr") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.mirostat_eta = std::stof(argv[i]); | |
} else if (arg == "--mirostat-ent") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.mirostat_tau = std::stof(argv[i]); | |
} else if (arg == "--cfg-negative-prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.cfg_negative_prompt = argv[i]; | |
} else if (arg == "--cfg-negative-prompt-file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
break; | |
} | |
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt)); | |
if (params.cfg_negative_prompt.back() == '\n') { | |
params.cfg_negative_prompt.pop_back(); | |
} | |
} else if (arg == "--cfg-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.cfg_scale = std::stof(argv[i]); | |
} else if (arg == "-b" || arg == "--batch-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_batch = std::stoi(argv[i]); | |
} else if (arg == "--keep") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_keep = std::stoi(argv[i]); | |
} else if (arg == "--draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_draft = std::stoi(argv[i]); | |
} else if (arg == "--chunks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_chunks = std::stoi(argv[i]); | |
} else if (arg == "-m" || arg == "--model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.model = argv[i]; | |
} else if (arg == "-md" || arg == "--model-draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.model_draft = argv[i]; | |
} else if (arg == "-a" || arg == "--alias") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.model_alias = argv[i]; | |
} else if (arg == "--lora") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.lora_adapter = argv[i]; | |
params.use_mmap = false; | |
} else if (arg == "--lora-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.lora_base = argv[i]; | |
} else if (arg == "-i" || arg == "--interactive") { | |
params.interactive = true; | |
} else if (arg == "--embedding") { | |
params.embedding = true; | |
} else if (arg == "--interactive-first") { | |
params.interactive_first = true; | |
} else if (arg == "-ins" || arg == "--instruct") { | |
params.instruct = true; | |
} else if (arg == "--multiline-input") { | |
params.multiline_input = true; | |
} else if (arg == "--simple-io") { | |
params.simple_io = true; | |
} else if (arg == "--color") { | |
params.use_color = true; | |
} else if (arg == "--mlock") { | |
params.use_mlock = true; | |
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_gpu_layers = std::stoi(argv[i]); | |
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); | |
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); | |
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.n_gpu_layers_draft = std::stoi(argv[i]); | |
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); | |
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); | |
} else if (arg == "--main-gpu" || arg == "-mg") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.main_gpu = std::stoi(argv[i]); | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); | |
} else if (arg == "--tensor-split" || arg == "-ts") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::string arg_next = argv[i]; | |
// split string by , and / | |
const std::regex regex{R"([,/]+)"}; | |
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; | |
std::vector<std::string> split_arg{it, {}}; | |
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); | |
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { | |
if (i < split_arg.size()) { | |
params.tensor_split[i] = std::stof(split_arg[i]); | |
} else { | |
params.tensor_split[i] = 0.0f; | |
} | |
} | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); | |
} else if (arg == "--no-mul-mat-q" || arg == "-nommq") { | |
params.mul_mat_q = false; | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n"); | |
} else if (arg == "--low-vram" || arg == "-lv") { | |
params.low_vram = true; | |
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); | |
} else if (arg == "--no-mmap") { | |
params.use_mmap = false; | |
} else if (arg == "--numa") { | |
params.numa = true; | |
} else if (arg == "--export") { | |
params.export_cgraph = true; | |
} else if (arg == "--verbose-prompt") { | |
params.verbose_prompt = true; | |
} else if (arg == "-r" || arg == "--reverse-prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.antiprompt.push_back(argv[i]); | |
} else if (arg == "-ld" || arg == "--logdir") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.logdir = argv[i]; | |
if (params.logdir.back() != DIRECTORY_SEPARATOR) { | |
params.logdir += DIRECTORY_SEPARATOR; | |
} | |
} else if (arg == "--perplexity") { | |
params.perplexity = true; | |
} else if (arg == "--ppl-stride") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.ppl_stride = std::stoi(argv[i]); | |
} else if (arg == "--ppl-output-type") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.ppl_output_type = std::stoi(argv[i]); | |
} else if (arg == "--hellaswag") { | |
params.hellaswag = true; | |
} else if (arg == "--hellaswag-tasks") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.hellaswag_tasks = std::stoi(argv[i]); | |
} else if (arg == "--ignore-eos") { | |
params.ignore_eos = true; | |
} else if (arg == "--no-penalize-nl") { | |
params.penalize_nl = false; | |
} else if (arg == "-l" || arg == "--logit-bias") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::stringstream ss(argv[i]); | |
llama_token key; | |
char sign; | |
std::string value_str; | |
try { | |
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { | |
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); | |
} else { | |
throw std::exception(); | |
} | |
} catch (const std::exception&) { | |
invalid_param = true; | |
break; | |
} | |
} else if (arg == "-h" || arg == "--help") { | |
gpt_print_usage(argc, argv, default_params); | |
log_print_usage(); | |
exit(0); | |
} else if (arg == "--random-prompt") { | |
params.random_prompt = true; | |
} else if (arg == "--in-prefix-bos") { | |
params.input_prefix_bos = true; | |
} else if (arg == "--in-prefix") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.input_prefix = argv[i]; | |
} else if (arg == "--in-suffix") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.input_suffix = argv[i]; | |
} else if (arg == "--grammar") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.grammar = argv[i]; | |
} else if (arg == "--grammar-file") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
std::ifstream file(argv[i]); | |
if (!file) { | |
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); | |
invalid_param = true; | |
break; | |
} | |
std::copy( | |
std::istreambuf_iterator<char>(file), | |
std::istreambuf_iterator<char>(), | |
std::back_inserter(params.grammar) | |
); | |
// Parse args for logging parameters | |
} else if ( log_param_single_parse( argv[i] ) ) { | |
// Do nothing, log_param_single_parse automatically does it's thing | |
// and returns if a match was found and parsed. | |
} else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) { | |
// We have a matching known parameter requiring an argument, | |
// now we need to check if there is anything after this argv | |
// and flag invalid_param or parse it. | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) { | |
invalid_param = true; | |
break; | |
} | |
// End of Parse args for logging parameters | |
} else { | |
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
gpt_print_usage(argc, argv, default_params); | |
exit(1); | |
} | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
gpt_print_usage(argc, argv, default_params); | |
exit(1); | |
} | |
if (params.prompt_cache_all && | |
(params.interactive || params.interactive_first || | |
params.instruct)) { | |
fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n"); | |
gpt_print_usage(argc, argv, default_params); | |
exit(1); | |
} | |
if (params.escape) { | |
process_escapes(params.prompt); | |
process_escapes(params.input_prefix); | |
process_escapes(params.input_suffix); | |
} | |
return true; | |
} | |
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { | |
printf("usage: %s [options]\n", argv[0]); | |
printf("\n"); | |
printf("options:\n"); | |
printf(" -h, --help show this help message and exit\n"); | |
printf(" -i, --interactive run in interactive mode\n"); | |
printf(" --interactive-first run in interactive mode and wait for input right away\n"); | |
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); | |
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); | |
printf(" -r PROMPT, --reverse-prompt PROMPT\n"); | |
printf(" halt generation at PROMPT, return control in interactive mode\n"); | |
printf(" (can be specified more than once for multiple prompts).\n"); | |
printf(" --color colorise output to distinguish prompt and user input from generations\n"); | |
printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); | |
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); | |
printf(" -p PROMPT, --prompt PROMPT\n"); | |
printf(" prompt to start generation with (default: empty)\n"); | |
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); | |
printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n"); | |
printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n"); | |
printf(" not supported with --interactive or other interactive options\n"); | |
printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n"); | |
printf(" --random-prompt start with a randomized prompt.\n"); | |
printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n"); | |
printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n"); | |
printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n"); | |
printf(" -f FNAME, --file FNAME\n"); | |
printf(" prompt file to start generation.\n"); | |
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); | |
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); | |
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); | |
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); | |
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); | |
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); | |
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p); | |
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n); | |
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty); | |
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty); | |
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty); | |
printf(" --mirostat N use Mirostat sampling.\n"); | |
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); | |
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat); | |
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta); | |
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau); | |
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); | |
printf(" modifies the likelihood of token appearing in the completion,\n"); | |
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); | |
printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); | |
printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); | |
printf(" --grammar-file FNAME file to read grammar from\n"); | |
printf(" --cfg-negative-prompt PROMPT\n"); | |
printf(" negative prompt to use for guidance. (default: empty)\n"); | |
printf(" --cfg-negative-prompt-file FNAME\n"); | |
printf(" negative prompt file to use for guidance. (default: empty)\n"); | |
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); | |
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n"); | |
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); | |
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n"); | |
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); | |
printf(" --no-penalize-nl do not penalize newline token\n"); | |
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); | |
printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); | |
printf(" --temp N temperature (default: %.1f)\n", (double)params.temp); | |
printf(" --perplexity compute perplexity over each ctx window of the prompt\n"); | |
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); | |
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); | |
printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); | |
printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); | |
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); | |
if (llama_mlock_supported()) { | |
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); | |
} | |
if (llama_mmap_supported()) { | |
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); | |
} | |
printf(" --numa attempt optimizations that help on some NUMA systems\n"); | |
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n"); | |
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n"); | |
printf(" -ngl N, --n-gpu-layers N\n"); | |
printf(" number of layers to store in VRAM\n"); | |
printf(" -ngld N, --n-gpu-layers-draft N\n"); | |
printf(" number of layers to store in VRAM for the draft model\n"); | |
printf(" -ts SPLIT --tensor-split SPLIT\n"); | |
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); | |
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); | |
printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n"); | |
printf(" -nommq, --no-mul-mat-q\n"); | |
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n"); | |
printf(" Not recommended since this is both slower and uses more VRAM.\n"); | |
printf(" --export export the computation graph to 'llama.ggml'\n"); | |
printf(" --verbose-prompt print prompt before generation\n"); | |
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); | |
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); | |
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); | |
printf(" -m FNAME, --model FNAME\n"); | |
printf(" model path (default: %s)\n", params.model.c_str()); | |
printf(" -md FNAME, --model-draft FNAME\n"); | |
printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str()); | |
printf(" -ld LOGDIR, --logdir LOGDIR\n"); | |
printf(" path under which to save YAML logs (no logging if unset)\n"); | |
printf("\n"); | |
} | |
std::string gpt_random_prompt(std::mt19937 & rng) { | |
const int r = rng() % 10; | |
switch (r) { | |
case 0: return "So"; | |
case 1: return "Once upon a time"; | |
case 2: return "When"; | |
case 3: return "The"; | |
case 4: return "After"; | |
case 5: return "If"; | |
case 6: return "import"; | |
case 7: return "He"; | |
case 8: return "She"; | |
case 9: return "They"; | |
default: return "To"; | |
} | |
return "The"; | |
} | |
// | |
// Model utils | |
// | |
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { | |
auto lparams = llama_context_default_params(); | |
lparams.n_ctx = params.n_ctx; | |
lparams.n_batch = params.n_batch; | |
if (params.n_gpu_layers != -1) { | |
lparams.n_gpu_layers = params.n_gpu_layers; | |
} | |
lparams.main_gpu = params.main_gpu; | |
lparams.tensor_split = params.tensor_split; | |
lparams.low_vram = params.low_vram; | |
lparams.mul_mat_q = params.mul_mat_q; | |
lparams.seed = params.seed; | |
lparams.f16_kv = params.memory_f16; | |
lparams.use_mmap = params.use_mmap; | |
lparams.use_mlock = params.use_mlock; | |
lparams.logits_all = params.perplexity; | |
lparams.embedding = params.embedding; | |
lparams.rope_freq_base = params.rope_freq_base; | |
lparams.rope_freq_scale = params.rope_freq_scale; | |
return lparams; | |
} | |
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) { | |
auto lparams = llama_context_params_from_gpt_params(params); | |
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
llama_context * lctx = llama_new_context_with_model(model, lparams); | |
if (lctx == NULL) { | |
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
if (!params.lora_adapter.empty()) { | |
int err = llama_model_apply_lora_from_file(model, | |
params.lora_adapter.c_str(), | |
params.lora_base.empty() ? NULL : params.lora_base.c_str(), | |
params.n_threads); | |
if (err != 0) { | |
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); | |
llama_free(lctx); | |
llama_free_model(model); | |
return std::make_tuple(nullptr, nullptr); | |
} | |
} | |
if (params.ignore_eos) { | |
params.logit_bias[llama_token_eos(lctx)] = -INFINITY; | |
} | |
{ | |
LOG("warming up the model with an empty run\n"); | |
const std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), }; | |
llama_eval(lctx, tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, params.n_threads); | |
llama_reset_timings(lctx); | |
} | |
return std::make_tuple(model, lctx); | |
} | |
// | |
// Vocab utils | |
// | |
std::vector<llama_token> llama_tokenize( | |
struct llama_context * ctx, | |
const std::string & text, | |
bool add_bos) { | |
// upper limit for the number of tokens | |
int n_tokens = text.length() + add_bos; | |
std::vector<llama_token> result(n_tokens); | |
n_tokens = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos); | |
if (n_tokens < 0) { | |
result.resize(-n_tokens); | |
int check = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos); | |
GGML_ASSERT(check == -n_tokens); | |
} else { | |
result.resize(n_tokens); | |
} | |
return result; | |
} | |
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { | |
std::vector<char> result(8, 0); | |
const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size()); | |
if (n_tokens < 0) { | |
result.resize(-n_tokens); | |
int check = llama_token_to_piece(ctx, token, result.data(), result.size()); | |
GGML_ASSERT(check == -n_tokens); | |
} else { | |
result.resize(n_tokens); | |
} | |
return std::string(result.data(), result.size()); | |
} | |
std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) { | |
const llama_token bos_id = llama_token_bos(ctx); | |
std::string piece; | |
std::string result; | |
for (size_t i = 0; i < tokens.size(); ++i) { | |
piece = llama_token_to_piece(ctx, tokens[i]); | |
// remove the leading space of the first non-BOS token | |
if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') { | |
piece = piece.substr(1); | |
} | |
result += piece; | |
} | |
return result; | |
} | |
std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) { | |
std::string piece; | |
std::string result; | |
for (size_t i = 0; i < tokens.size(); ++i) { | |
piece = llama_token_to_piece(ctx, tokens[i]); | |
result += piece; | |
} | |
return result; | |
} | |
// | |
// Sampling utils | |
// | |
llama_token llama_sample_token( | |
struct llama_context * ctx, | |
struct llama_context * ctx_guidance, | |
struct llama_grammar * grammar, | |
const struct gpt_params & params, | |
const std::vector<llama_token> & last_tokens, | |
std::vector<llama_token_data> & candidates, | |
int idx) { | |
const int n_ctx = llama_n_ctx(ctx); | |
const int n_vocab = llama_n_vocab(ctx); | |
const float temp = params.temp; | |
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; | |
const float top_p = params.top_p; | |
const float tfs_z = params.tfs_z; | |
const float typical_p = params.typical_p; | |
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; | |
const float repeat_penalty = params.repeat_penalty; | |
const float alpha_presence = params.presence_penalty; | |
const float alpha_frequency = params.frequency_penalty; | |
const int mirostat = params.mirostat; | |
const float mirostat_tau = params.mirostat_tau; | |
const float mirostat_eta = params.mirostat_eta; | |
const bool penalize_nl = params.penalize_nl; | |
llama_token id = 0; | |
float * logits = llama_get_logits(ctx) + idx * n_vocab; | |
// Apply params.logit_bias map | |
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { | |
logits[it->first] += it->second; | |
} | |
candidates.clear(); | |
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
} | |
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; | |
if (ctx_guidance) { | |
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); | |
} | |
// apply penalties | |
if (!last_tokens.empty()) { | |
const float nl_logit = logits[llama_token_nl(ctx)]; | |
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); | |
llama_sample_repetition_penalty(ctx, &cur_p, | |
last_tokens.data() + last_tokens.size() - last_n_repeat, | |
last_n_repeat, repeat_penalty); | |
llama_sample_frequency_and_presence_penalties(ctx, &cur_p, | |
last_tokens.data() + last_tokens.size() - last_n_repeat, | |
last_n_repeat, alpha_frequency, alpha_presence); | |
if (!penalize_nl) { | |
for (size_t idx = 0; idx < cur_p.size; idx++) { | |
if (cur_p.data[idx].id == llama_token_nl(ctx)) { | |
cur_p.data[idx].logit = nl_logit; | |
break; | |
} | |
} | |
} | |
} | |
if (grammar != NULL) { | |
llama_sample_grammar(ctx, &cur_p, grammar); | |
} | |
if (temp <= 0) { | |
// Greedy sampling | |
id = llama_sample_token_greedy(ctx, &cur_p); | |
} else { | |
if (mirostat == 1) { | |
static float mirostat_mu = 2.0f * mirostat_tau; | |
const int mirostat_m = 100; | |
llama_sample_temperature(ctx, &cur_p, temp); | |
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); | |
} else if (mirostat == 2) { | |
static float mirostat_mu = 2.0f * mirostat_tau; | |
llama_sample_temperature(ctx, &cur_p, temp); | |
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); | |
} else { | |
// Temperature sampling | |
llama_sample_top_k (ctx, &cur_p, top_k, 1); | |
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1); | |
llama_sample_typical (ctx, &cur_p, typical_p, 1); | |
llama_sample_top_p (ctx, &cur_p, top_p, 1); | |
llama_sample_temperature(ctx, &cur_p, temp); | |
{ | |
const int n_top = 10; | |
LOG("top %d candidates:\n", n_top); | |
for (int i = 0; i < n_top; i++) { | |
const llama_token id = cur_p.data[i].id; | |
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); | |
} | |
} | |
id = llama_sample_token(ctx, &cur_p); | |
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); | |
} | |
} | |
// printf("`%d`", candidates_p.size); | |
if (grammar != NULL) { | |
llama_grammar_accept_token(ctx, grammar, id); | |
} | |
return id; | |
} | |
// | |
// YAML utils | |
// | |
// returns true if successful, false otherwise | |
bool create_directory_with_parents(const std::string & path) { | |
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter; | |
std::wstring wpath = converter.from_bytes(path); | |
// if the path already exists, check whether it's a directory | |
const DWORD attributes = GetFileAttributesW(wpath.c_str()); | |
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { | |
return true; | |
} | |
size_t pos_slash = 0; | |
// process path from front to back, procedurally creating directories | |
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { | |
const std::wstring subpath = wpath.substr(0, pos_slash); | |
const wchar_t * test = subpath.c_str(); | |
const bool success = CreateDirectoryW(test, NULL); | |
if (!success) { | |
const DWORD error = GetLastError(); | |
// if the path already exists, ensure that it's a directory | |
if (error == ERROR_ALREADY_EXISTS) { | |
const DWORD attributes = GetFileAttributesW(subpath.c_str()); | |
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { | |
return false; | |
} | |
} else { | |
return false; | |
} | |
} | |
pos_slash += 1; | |
} | |
return true; | |
// if the path already exists, check whether it's a directory | |
struct stat info; | |
if (stat(path.c_str(), &info) == 0) { | |
return S_ISDIR(info.st_mode); | |
} | |
size_t pos_slash = 1; // skip leading slashes for directory creation | |
// process path from front to back, procedurally creating directories | |
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { | |
const std::string subpath = path.substr(0, pos_slash); | |
struct stat info; | |
// if the path already exists, ensure that it's a directory | |
if (stat(subpath.c_str(), &info) == 0) { | |
if (!S_ISDIR(info.st_mode)) { | |
return false; | |
} | |
} else { | |
// create parent directories | |
const int ret = mkdir(subpath.c_str(), 0755); | |
if (ret != 0) { | |
return false; | |
} | |
} | |
pos_slash += 1; | |
} | |
return true; | |
} | |
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) { | |
if (data.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
fprintf(stream, "%s: [", prop_name); | |
for (size_t i = 0; i < data.size() - 1; ++i) { | |
fprintf(stream, "%e, ", data[i]); | |
} | |
fprintf(stream, "%e]\n", data.back()); | |
} | |
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) { | |
if (data.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
fprintf(stream, "%s: [", prop_name); | |
for (size_t i = 0; i < data.size() - 1; ++i) { | |
fprintf(stream, "%d, ", data[i]); | |
} | |
fprintf(stream, "%d]\n", data.back()); | |
} | |
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) { | |
std::string data_str(data == NULL ? "" : data); | |
if (data_str.empty()) { | |
fprintf(stream, "%s:\n", prop_name); | |
return; | |
} | |
size_t pos_start = 0; | |
size_t pos_found = 0; | |
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) { | |
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); | |
data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); | |
data_str = "\"" + data_str + "\""; | |
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); | |
return; | |
} | |
if (data_str.find('\n') == std::string::npos) { | |
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); | |
return; | |
} | |
fprintf(stream, "%s: |\n", prop_name); | |
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { | |
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); | |
pos_start = pos_found + 1; | |
} | |
} | |
std::string get_sortable_timestamp() { | |
using clock = std::chrono::system_clock; | |
const clock::time_point current_time = clock::now(); | |
const time_t as_time_t = clock::to_time_t(current_time); | |
char timestamp_no_ns[100]; | |
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); | |
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>( | |
current_time.time_since_epoch() % 1000000000).count(); | |
char timestamp_ns[11]; | |
snprintf(timestamp_ns, 11, "%09" PRId64, ns); | |
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); | |
} | |
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, | |
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) { | |
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT); | |
fprintf(stream, "build_number: %d\n", BUILD_NUMBER); | |
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); | |
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); | |
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); | |
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); | |
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); | |
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); | |
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); | |
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); | |
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); | |
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); | |
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); | |
fprintf(stream, "debug: false\n"); | |
fprintf(stream, "debug: true\n"); | |
fprintf(stream, "model_desc: %s\n", model_desc); | |
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx)); | |
fprintf(stream, "optimize: true\n"); | |
fprintf(stream, "optimize: false\n"); | |
fprintf(stream, "time: %s\n", timestamp.c_str()); | |
fprintf(stream, "\n"); | |
fprintf(stream, "###############\n"); | |
fprintf(stream, "# User Inputs #\n"); | |
fprintf(stream, "###############\n"); | |
fprintf(stream, "\n"); | |
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); | |
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); | |
dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str()); | |
fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale); | |
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); | |
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); | |
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); | |
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); | |
fprintf(stream, "export: %s # default: false\n", params.export_cgraph ? "true" : "false"); | |
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); | |
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty); | |
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str()); | |
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); | |
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); | |
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); | |
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx)); | |
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY; | |
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); | |
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); | |
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); | |
dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str()); | |
fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); | |
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); | |
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); | |
fprintf(stream, "keep: %d # default: 0\n", params.n_keep); | |
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); | |
fprintf(stream, "logit_bias:\n"); | |
for (std::pair<llama_token, float> lb : params.logit_bias) { | |
if (ignore_eos && lb.first == logit_bias_eos->first) { | |
continue; | |
} | |
fprintf(stream, " %d: %f", lb.first, lb.second); | |
} | |
fprintf(stream, "lora: %s\n", params.lora_adapter.c_str()); | |
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); | |
fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false"); | |
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); | |
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false"); | |
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat); | |
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau); | |
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta); | |
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); | |
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); | |
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); | |
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); | |
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); | |
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); | |
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs); | |
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); | |
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false"); | |
fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false"); | |
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false"); | |
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); | |
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); | |
fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty); | |
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); | |
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); | |
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); | |
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); | |
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); | |
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); | |
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty); | |
fprintf(stream, "reverse_prompt:\n"); | |
for (std::string ap : params.antiprompt) { | |
size_t pos = 0; | |
while ((pos = ap.find('\n', pos)) != std::string::npos) { | |
ap.replace(pos, 1, "\\n"); | |
pos += 1; | |
} | |
fprintf(stream, " - %s\n", ap.c_str()); | |
} | |
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); | |
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); | |
fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed); | |
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); | |
fprintf(stream, "temp: %f # default: 0.8\n", params.temp); | |
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES); | |
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); | |
fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z); | |
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency()); | |
fprintf(stream, "top_k: %d # default: 40\n", params.top_k); | |
fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p); | |
fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p); | |
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); | |
} | |