Spaces:
Build error
Build error
#!/usr/bin/env python | |
import argparse | |
import concurrent.futures | |
import copy | |
import enum | |
import faulthandler | |
import functools | |
import io | |
import itertools | |
import json | |
import math | |
import mmap | |
import pickle | |
import re | |
import signal | |
import struct | |
import sys | |
import zipfile | |
from abc import ABCMeta, abstractmethod | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, | |
Literal, Optional, Sequence, Tuple, TypeVar, Union) | |
import numpy as np | |
from sentencepiece import SentencePieceProcessor # type: ignore | |
if TYPE_CHECKING: | |
from typing_extensions import TypeAlias | |
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): | |
faulthandler.register(signal.SIGUSR1) | |
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' | |
class UnquantizedDataType: | |
name: str | |
DT_F16 = UnquantizedDataType('F16') | |
DT_F32 = UnquantizedDataType('F32') | |
DT_I32 = UnquantizedDataType('I32') | |
DT_BF16 = UnquantizedDataType('BF16') | |
class QuantizedDataType: | |
groupsize: int | |
have_addends: bool | |
have_g_idx: bool | |
DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False) | |
DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False) | |
DataType = Union[UnquantizedDataType, QuantizedDataType] | |
DATA_TYPE_TO_FTYPE: Dict[DataType, int] = { | |
DT_F32: 0, | |
DT_F16: 1, | |
DT_Q4_0: 2, | |
DT_Q4_1: 3, | |
} | |
FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \ | |
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()} | |
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { | |
DT_BF16: np.dtype(np.uint16), | |
DT_F16: np.dtype(np.float16), | |
DT_F32: np.dtype(np.float32), | |
DT_I32: np.dtype(np.int32), | |
} | |
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \ | |
{dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()} | |
class GGMLFileType(enum.Enum): | |
AllF32 = 0 | |
MostlyF16 = 1 # except 1d tensors | |
MostlyQ4_0 = 2 # except 1d tensors | |
MostlyQ4_1 = 3 # except 1d tensors | |
PerLayerIsQ4_1 = 4 # but tok_embeddings.weight and output.weight are F16 | |
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType: | |
if len(tensor.shape) == 1: | |
# 1D tensors are always F32. | |
return DT_F32 | |
elif self == GGMLFileType.AllF32: | |
return DT_F32 | |
elif self == GGMLFileType.MostlyF16: | |
return DT_F16 | |
elif self == GGMLFileType.MostlyQ4_0: | |
return DT_Q4_0 | |
elif self == GGMLFileType.MostlyQ4_1: | |
return DT_Q4_1 | |
elif self == GGMLFileType.PerLayerIsQ4_1: | |
if name in ('output.weight', 'tok_embeddings.weight'): | |
return DT_F16 | |
else: | |
return DT_Q4_1 | |
else: | |
raise ValueError(self) | |
def make_tensors_list() -> List[str]: | |
ret = [ | |
'tok_embeddings.weight', | |
'norm.weight', | |
'output.weight', | |
] | |
for i in range(80): # maximum number of layer | |
ret += [ | |
f'layers.{i}.attention.wq.weight', | |
f'layers.{i}.attention.wk.weight', | |
f'layers.{i}.attention.wv.weight', | |
f'layers.{i}.attention.wo.weight', | |
f'layers.{i}.attention_norm.weight', | |
f'layers.{i}.feed_forward.w1.weight', | |
f'layers.{i}.feed_forward.w2.weight', | |
f'layers.{i}.feed_forward.w3.weight', | |
f'layers.{i}.ffn_norm.weight', | |
] | |
return ret | |
TENSORS_LIST = make_tensors_list() | |
TENSORS_SET = set(TENSORS_LIST) | |
def find_n_mult(n_ff: int, n_embd: int) -> int: | |
# hardcoded magic range | |
for n_mult in range(8192, 1, -1): | |
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult | |
if calc_ff == n_ff: | |
return n_mult | |
raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).") | |
class Params: | |
n_vocab: int | |
n_embd: int | |
n_mult: int | |
n_head: int | |
n_layer: int | |
n_kv_head: Optional[int] # This parameter is only used for Llama 2 | |
def guessed(model: 'LazyModel') -> 'Params': | |
# try transformer naming first | |
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape | |
# try transformer naming first | |
if "model.layers.0.self_attn.q_proj.weight" in model: | |
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) | |
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming | |
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) | |
else: | |
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) | |
if n_layer < 1: | |
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n" | |
"Suggestion: provide 'config.json' of the model in the same directory containing model files.") | |
n_head=n_embd // 128 # guessed | |
return Params( | |
n_vocab = n_vocab, | |
n_embd = n_embd, | |
n_mult = 256, | |
n_head = n_head, | |
n_layer = n_layer, | |
n_kv_head = None, | |
) | |
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params': | |
config = json.load(open(config_path)) | |
n_vocab = config["vocab_size"]; | |
n_embd = config["hidden_size"]; | |
n_head = config["num_attention_heads"]; | |
n_layer = config["num_hidden_layers"]; | |
n_ff = config["intermediate_size"]; | |
n_kv_head = config.get("num_key_value_heads") | |
n_mult = find_n_mult(n_ff, n_embd); | |
return Params( | |
n_vocab = n_vocab, | |
n_embd = n_embd, | |
n_mult = n_mult, | |
n_head = n_head, | |
n_layer = n_layer, | |
n_kv_head = n_kv_head, | |
) | |
# LLaMA v2 70B params.json | |
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1 | |
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params': | |
config = json.load(open(config_path)) | |
n_vocab = config["vocab_size"]; | |
n_embd = config["dim"]; | |
n_head = config["n_heads"]; | |
n_layer = config["n_layers"]; | |
n_mult = config["multiple_of"]; | |
if n_vocab == -1: | |
n_vocab = model["tok_embeddings.weight"].shape[0] | |
return Params( | |
n_vocab = n_vocab, | |
n_embd = n_embd, | |
n_mult = n_mult, | |
n_head = n_head, | |
n_layer = n_layer, | |
n_kv_head = None, | |
) | |
def load(model_plus: 'ModelPlus') -> 'Params': | |
hf_config_path = model_plus.paths[0].parent / "config.json" | |
orig_config_path = model_plus.paths[0].parent / "params.json" | |
if hf_config_path.exists(): | |
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) | |
elif orig_config_path.exists(): | |
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) | |
else: | |
params = Params.guessed(model_plus.model) | |
print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}') | |
return params | |
class SentencePieceVocab: | |
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None: | |
self.vocabtype = vocabtype | |
if self.vocabtype == "bpe": | |
self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read()) | |
else: | |
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) | |
added_tokens: Dict[str, int] | |
if fname_added_tokens is not None: | |
added_tokens = json.load(open(fname_added_tokens)) | |
else: | |
added_tokens = {} | |
if self.vocabtype == "bpe": | |
vocab_size: int = len(self.sentencepiece_tokenizer) | |
else: | |
vocab_size: int = self.sentencepiece_tokenizer.vocab_size() | |
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) | |
actual_ids = sorted(added_tokens.values()) | |
if expected_ids != actual_ids: | |
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") | |
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) | |
self.added_tokens_list = [text for (text, idx) in items] | |
self.vocab_size_base: int = vocab_size | |
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) | |
self.fname_tokenizer = fname_tokenizer | |
self.fname_added_tokens = fname_added_tokens | |
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: | |
tokenizer = self.sentencepiece_tokenizer | |
if self.vocabtype == "bpe": | |
from transformers.models.gpt2 import tokenization_gpt2 | |
byte_encoder = tokenization_gpt2.bytes_to_unicode() | |
byte_decoder = {v: k for k, v in byte_encoder.items()} | |
for i, item in enumerate(tokenizer): | |
text: bytes | |
text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]]) | |
score: float = -i | |
yield text, score | |
else: | |
for i in range(tokenizer.vocab_size()): | |
text: bytes | |
if tokenizer.is_unknown(i): | |
text = " \u2047 ".encode("utf-8") | |
elif tokenizer.is_control(i): | |
text = b"" | |
elif tokenizer.is_byte(i): | |
piece = tokenizer.id_to_piece(i) | |
if len(piece) != 6: | |
raise Exception(f"Invalid token: {piece}") | |
byte_value = int(piece[3:-1], 16) | |
text = struct.pack("B", byte_value) | |
else: | |
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") | |
score: float = tokenizer.get_score(i) | |
yield text, score | |
def added_tokens(self) -> Iterable[Tuple[bytes, float]]: | |
for text in self.added_tokens_list: | |
score = -1000.0 | |
yield text.encode("utf-8"), score | |
def all_tokens(self) -> Iterable[Tuple[bytes, float]]: | |
yield from self.sentencepiece_tokens() | |
yield from self.added_tokens() | |
def __repr__(self) -> str: | |
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" | |
class GGMLVocab: | |
def __init__(self, tokens: List[Tuple[bytes, float]]): | |
self.tokens = tokens | |
self.vocab_size = len(tokens) | |
def all_tokens(self) -> Iterable[Tuple[bytes, float]]: | |
return self.tokens | |
def __repr__(self) -> str: | |
return f"<GGMLVocab with {self.vocab_size} tokens>" | |
Vocab = Union[SentencePieceVocab, GGMLVocab] | |
def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray: | |
if n_kv_head is not None and n_head != n_kv_head: | |
n_head //= n_kv_head | |
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape)) | |
def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray: | |
# First reinterpret each row from a list of int32s containing 8 values each | |
# to a list of uint8s containing 2 values each. | |
qvalues_pack8 = qvalues_pack32.view(np.uint8) | |
# Then split out the two values per int8 (which requires an actual | |
# conversion because numpy doesn't natively support int4s). | |
qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8) | |
qvalues[:, 0::2] = qvalues_pack8 & 0xf | |
qvalues[:, 1::2] = qvalues_pack8 >> 4 | |
assert addends is None or addends.shape == scales.shape | |
assert qvalues.shape[0] == scales.shape[0] | |
assert qvalues.shape[1] % scales.shape[1] == 0 | |
if g_idx is None: | |
repeat_count = qvalues.shape[1] // scales.shape[1] | |
scales = scales[:, :, np.newaxis] | |
if addends is not None: | |
addends = addends[:, :, np.newaxis] | |
# Reshape so that the below computation broadcasts over scales and addends: | |
qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count)) | |
else: | |
# In this case the scale and addend is selected for each column by g_idx: | |
assert addends is not None | |
scales = scales[:, g_idx] | |
addends = addends[:, g_idx] | |
if addends is None: | |
# Q4_0 | |
qvalues = qvalues.view(np.int8) | |
qvalues -= 8 | |
# And do the actual 'value = scale * qvalue + addend' computation. | |
values = scales * qvalues | |
if addends is not None: | |
values += addends | |
if g_idx is None: | |
values.shape = (values.shape[0], values.shape[1] * values.shape[2]) | |
return values | |
class Tensor(metaclass=ABCMeta): | |
data_type: DataType | |
def astype(self, data_type: DataType) -> 'Tensor': ... | |
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor': ... | |
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ... | |
def part(self, n_part: int) -> 'UnquantizedTensor': ... | |
def to_ggml(self) -> 'GGMLCompatibleTensor': ... | |
def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray: | |
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" | |
fp32_arr = bf16_arr.astype(np.uint32) << 16 | |
return fp32_arr.view(np.float32) | |
class UnquantizedTensor(Tensor): | |
def __init__(self, ndarray: NDArray) -> None: | |
assert isinstance(ndarray, np.ndarray) | |
self.ndarray = ndarray | |
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] | |
def astype(self, data_type: DataType) -> Tensor: | |
dtype = DATA_TYPE_TO_NUMPY[data_type] | |
if self.data_type == DT_BF16: | |
self.ndarray = bf16_to_fp32(self.ndarray) | |
return UnquantizedTensor(self.ndarray.astype(dtype)) | |
def to_ggml(self) -> 'UnquantizedTensor': | |
return self | |
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': | |
r = self.ndarray.shape[0] // 3 | |
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head)) | |
def part(self, n_part: int) -> 'UnquantizedTensor': | |
r = self.ndarray.shape[0] // 3 | |
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) | |
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor': | |
return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head)) | |
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray: | |
tensor = lazy_tensor.load() | |
assert isinstance(tensor, UnquantizedTensor) | |
# double-check: | |
actual_shape = list(tensor.ndarray.shape) | |
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) | |
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: | |
if convert: | |
tensor.ndarray = tensor.ndarray.astype(expected_dtype) | |
else: | |
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') | |
return tensor.ndarray | |
class GGMLQuantizedTensor(Tensor): | |
data_type: QuantizedDataType | |
def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None: | |
rows, columns = shape | |
assert data_type in (DT_Q4_1, DT_Q4_0) # for now | |
assert isinstance(data_type, QuantizedDataType) # redundant, but mypy complains without this | |
assert columns % data_type.groupsize == 0 | |
words_in_block = 6 if data_type == DT_Q4_1 else 5 | |
self.ndarray = ndarray.view(dtype=np.uint32).reshape((rows, columns // data_type.groupsize, words_in_block)) | |
self.shape = shape[:] | |
self.data_type = data_type | |
def astype(self, data_type: DataType) -> Tensor: | |
if data_type == self.data_type: | |
return self | |
scales = self.ndarray[:, :, 0].view(np.float32) | |
if self.data_type.have_addends: | |
addends = self.ndarray[:, :, 1].view(np.float32) | |
else: | |
addends = None | |
qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8]) | |
dq = dequantize_q4(qweights, scales, addends, g_idx=None) | |
return UnquantizedTensor(dq).astype(data_type) | |
def to_ggml(self) -> 'GGMLQuantizedTensor': | |
return self | |
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor': | |
return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head), self.shape, self.data_type) | |
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': | |
r = self.ndarray.shape[0] // 3 | |
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head)) | |
def part(self, n_part: int) -> 'UnquantizedTensor': | |
r = self.ndarray.shape[0] // 3 | |
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) | |
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor] | |
class DeferredPermutedTensor(Tensor): | |
def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None: | |
self.base = base | |
self.n_head = n_head | |
self.n_kv_head = n_kv_head | |
self.data_type = self.base.data_type | |
def astype(self, data_type: DataType) -> Tensor: | |
return self.base.astype(data_type).permute(self.n_head, self.n_kv_head) | |
def to_ggml(self) -> GGMLCompatibleTensor: | |
return self.base.to_ggml().permute(self.n_head, self.n_kv_head) | |
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor: | |
raise Exception("shouldn't permute twice") | |
class GPTQForLLaMaQuantizedTensor(Tensor): | |
def __init__(self, model: 'LazyModel', namebase: str) -> None: | |
qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32) | |
scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True) | |
bias = model.get(f"{namebase}.bias") | |
if bias is not None: | |
# Q4_1 does not support bias; good thing the bias is always all zeros. | |
assert not np.any(load_unquantized(bias)) | |
if f"{namebase}.zeros" in model: | |
zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32) | |
else: | |
qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32) | |
assert qzeros.dtype == np.int32 | |
zeros = dequantize_q4(qzeros, scales, scales, g_idx=None) | |
assert zeros.dtype == np.float32 | |
assert zeros.shape == scales.shape | |
# Output is transposed compared to the input, and addends have their sign flipped. | |
# Scales and zeros similarly must be transposed but only for newer | |
# versions of GPTQ-for-LLaMa; the older versions can be identified by | |
# having shape (n_embd, 1). | |
qweight = qweight.T | |
if scales.shape[1] != 1: | |
scales = scales.T | |
zeros = zeros.T | |
# Output also has signs flipped for the addends. | |
self.qweight = qweight | |
self.scales = scales | |
self.addends = -zeros | |
self.g_idx: Optional[NDArray] | |
if f"{namebase}.g_idx" in model: | |
self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32) | |
assert self.g_idx.shape == (qweight.shape[1] * 8,) | |
else: | |
self.g_idx = None | |
self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8] | |
self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True, | |
have_g_idx=(self.g_idx is not None)) | |
def inspect(self, row: int, col: int) -> None: | |
'''For debugging.''' | |
qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf | |
if self.g_idx is not None: | |
group = self.g_idx[col] | |
else: | |
group = int(col // self.groupsize()) | |
scale = self.scales[row, group] | |
addend = self.addends[row, group] | |
with np.printoptions(precision=None, suppress=True): | |
print(f'scale:{scale} addend:{addend} qweight:{qweight}') | |
print('possible values:', np.arange(16) * scale + addend) | |
print('actual value:', qweight * scale + addend) | |
def astype(self, data_type: DataType) -> Tensor: | |
if isinstance(data_type, QuantizedDataType): | |
assert self.g_idx is None and data_type.have_addends is True and data_type.have_g_idx is False | |
return self.regroup(data_type.groupsize) | |
dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales, self.addends, self.g_idx) | |
return UnquantizedTensor(dequantized).astype(data_type) | |
def groupsize(self) -> int: | |
assert self.addends.shape == self.scales.shape | |
assert self.shape[1] % self.scales.shape[1] == 0 | |
return self.shape[1] // self.scales.shape[1] | |
def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor': | |
# Old versions of GPTQ-for-LLaMa shared scales and addends between all the | |
# columns in a row. Newer versions share them between every set of N | |
# columns in a row, where N is the `groupsize` parameter, usually 128. The | |
# output format shares them between every set of 32 columns. To handle | |
# this, duplicate scales and addends for every smaller group. | |
# (In the above, 'row' and 'column' are in the sense of the output.) | |
assert self.g_idx is None | |
old_groupsize = self.groupsize() | |
assert old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0, old_groupsize | |
ret = copy.copy(self) | |
ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1) | |
ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1) | |
ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False) | |
return ret | |
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor: | |
return DeferredPermutedTensor(self, n_head, n_kv_head) | |
def to_ggml(self) -> GGMLQuantizedTensor: | |
# The output format looks like this: | |
# For each row: | |
# For each group of 32 columns: | |
# - addend (float32, 4 bytes) | |
# - scale (float32, 4 bytes) | |
# - weights (int4 * 32, 16 bytes) | |
if self.groupsize() != 32: | |
raise Exception("should have been regrouped before converting to ggml") | |
# Since the output format is mixed between integers and floats, we have | |
# to hackily view the floats as int32s just so numpy will let us | |
# concatenate them. | |
addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis] | |
scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis] | |
# Split into groups of 4 columns (i.e. 32 columns of quantized data): | |
grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4]) | |
# And concatenate: | |
grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no') | |
return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1) | |
class LazyTensor: | |
_load: Callable[[], Tensor] | |
shape: List[int] | |
data_type: DataType | |
description: str | |
def load(self) -> Tensor: | |
ret = self._load() | |
assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description) | |
return ret | |
def astype(self, data_type: DataType) -> 'LazyTensor': | |
self.validate_conversion_to(data_type) | |
def load() -> Tensor: | |
return self.load().astype(data_type) | |
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') | |
def validate_conversion_to(self, data_type: DataType) -> None: | |
if data_type == self.data_type: | |
return | |
if isinstance(data_type, QuantizedDataType): | |
if not isinstance(self.data_type, QuantizedDataType): | |
raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})") | |
if self.data_type.have_g_idx: | |
sys.stderr.write( | |
"Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), " | |
"which is not yet natively supported by GGML. " | |
"For now you can still convert this model by passing `--outtype f16` to dequantize, " | |
"but that will result in a much larger output file for no quality benefit.\n") | |
sys.exit(1) | |
assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends | |
LazyModel = Dict[str, LazyTensor] | |
class ModelPlus: | |
model: LazyModel | |
paths: List[Path] # Where this was read from. | |
format: Literal['ggml', 'torch', 'safetensors'] | |
vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab. | |
def merge_sharded(models: List[LazyModel]) -> LazyModel: | |
# Original LLaMA models have each file contain one part of each tensor. | |
# Use a dict instead of a set to preserve order. | |
names = {name: None for model in models for name in model} | |
def convert(name: str) -> LazyTensor: | |
lazy_tensors: List[LazyTensor] = [model[name] for model in models] | |
if len(lazy_tensors) == 1: | |
# only one file; don't go through this procedure since there might | |
# be quantized tensors | |
return lazy_tensors[0] | |
if len(lazy_tensors[0].shape) == 1: | |
# the tensor is just duplicated in every file | |
return lazy_tensors[0] | |
if name.startswith('tok_embeddings.') or \ | |
name.endswith('.attention.wo.weight') or \ | |
name.endswith('.feed_forward.w2.weight'): | |
# split by columns | |
axis = 1 | |
else: | |
# split by rows | |
axis = 0 | |
concatenated_shape = list(lazy_tensors[0].shape) | |
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) | |
def load() -> UnquantizedTensor: | |
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] | |
concatenated: NDArray = np.concatenate(ndarrays, axis=axis) | |
return UnquantizedTensor(concatenated) | |
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' | |
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) | |
return {name: convert(name) for name in names} | |
def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus: | |
formats = set(mp.format for mp in models_plus) | |
assert len(formats) == 1, "different formats?" | |
format = formats.pop() | |
paths = [path for mp in models_plus for path in mp.paths] | |
# Use the first non-None vocab, if any. | |
try: | |
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) | |
except StopIteration: | |
vocab = None | |
if any("model.embed_tokens.weight" in mp.model for mp in models_plus): | |
# Transformers models put different tensors in different files, but | |
# don't split indivdual tensors between files. | |
model: LazyModel = {} | |
for mp in models_plus: | |
model.update(mp.model) | |
else: | |
model = merge_sharded([mp.model for mp in models_plus]) | |
return ModelPlus(model, paths, format, vocab) | |
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_kv_head: Optional[int] = None) -> LazyTensor: | |
def load() -> Tensor: | |
return lazy_tensor.load().permute(n_head, n_kv_head) | |
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description) | |
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor: | |
def load() -> Tensor: | |
return lazy_tensor.load().permute_part(n_part, n_head) | |
s = lazy_tensor.shape.copy() | |
s[0] = s[0] // 3 | |
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) | |
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: | |
def load() -> Tensor: | |
return lazy_tensor.load().part(n_part) | |
s = lazy_tensor.shape.copy() | |
s[0] = s[0] // 3 | |
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) | |
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel: | |
out: LazyModel = {} | |
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] | |
out["norm.weight"] = model["model.norm.weight"] | |
out["output.weight"] = model["lm_head.weight"] | |
for i in itertools.count(): | |
if f"model.layers.{i}.self_attn.q_proj.weight" in model: | |
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head) | |
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_kv_head) | |
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] | |
elif f"model.layers.{i}.self_attn.W_pack.weight" in model: | |
out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head) | |
out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head) | |
out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) | |
else: | |
break | |
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] | |
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"] | |
out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"] | |
out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"] | |
out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"] | |
out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"] | |
return out | |
def handle_quantization(model: LazyModel) -> LazyModel: | |
'''Convert a model with entries for 'foo.qweight', 'foo.scales', etc. | |
(which resolve to UnquantizedTensors with the raw data) to one with entries | |
for 'foo.weight' (which resolve to QuantizedTensors). | |
''' | |
def convert(name: str) -> Tuple[str, LazyTensor]: | |
if name.endswith(".qweight"): | |
namebase = name.rsplit('.', 1)[0] | |
orig_name = namebase + ".weight" | |
lazy_tensor = model[name] | |
assert len(lazy_tensor.shape) == 2 | |
real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8] | |
# Calculate type. This replicates the logic in | |
# GPTQForLLaMaQuantizedTensor (which is executed when the modelis | |
# actually loaded). | |
lazy_scales = model[f"{namebase}.scales"] | |
scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0] | |
assert real_shape[1] % scales_width == 0 | |
groupsize = real_shape[1] // scales_width | |
have_g_idx = f"{namebase}.g_idx" in model | |
data_type = QuantizedDataType(groupsize=groupsize, have_addends=True, have_g_idx=have_g_idx) | |
def load() -> Tensor: | |
return GPTQForLLaMaQuantizedTensor(model, namebase) | |
return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]')) | |
else: | |
return (name, model[name]) | |
return dict(convert(name) for name in model) | |
# Functionality that simulates `torch.load` but where individual tensors are | |
# only loaded into memory on demand, not all at once. | |
# PyTorch can't do this natively as of time of writing: | |
# - https://github.com/pytorch/pytorch/issues/64327 | |
# This allows us to de-shard without multiplying RAM usage, and also | |
# conveniently drops the PyTorch dependency (though we still need numpy). | |
class LazyStorageKind: | |
data_type: DataType | |
class LazyStorage: | |
load: Callable[[int, int], NDArray] | |
kind: LazyStorageKind | |
description: str | |
class LazyUnpickler(pickle.Unpickler): | |
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): | |
super().__init__(fp) | |
self.data_base_path = data_base_path | |
self.zip_file = zip_file | |
def persistent_load(self, pid: Any) -> Any: | |
assert pid[0] == 'storage' | |
assert isinstance(pid[1], LazyStorageKind) | |
data_type = pid[1].data_type | |
filename_stem = pid[2] | |
filename = self.data_base_path + '/' + filename_stem | |
info = self.zip_file.getinfo(filename) | |
def load(offset: int, elm_count: int) -> NDArray: | |
dtype = DATA_TYPE_TO_NUMPY.get(data_type) | |
if dtype is None: | |
raise Exception("tensor stored in unsupported format") | |
fp = self.zip_file.open(info) | |
fp.seek(offset * dtype.itemsize) | |
size = elm_count * dtype.itemsize | |
data = fp.read(size) | |
assert len(data) == size | |
return np.frombuffer(data, dtype) | |
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' | |
return LazyStorage(load=load, kind=pid[1], description=description) | |
# @staticmethod | |
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, | |
# pyright: ignore[reportSelfClsParameterName] | |
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: | |
assert isinstance(storage, LazyStorage) | |
def load() -> UnquantizedTensor: | |
elm_count = stride[0] * size[0] | |
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) | |
description = f'pickled storage_offset={storage_offset} in {storage.description}' | |
return LazyTensor(load, list(size), storage.kind.data_type, description) | |
# @staticmethod | |
def rebuild_from_type_v2(func, new_type, args, state): | |
return func(*args) | |
CLASSES: Dict[Any, Any] = { | |
('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2, | |
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, | |
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), | |
('torch', 'HalfStorage'): LazyStorageKind(DT_F16), | |
('torch', 'FloatStorage'): LazyStorageKind(DT_F32), | |
('torch', 'IntStorage'): LazyStorageKind(DT_I32), | |
('torch', 'Tensor'): LazyTensor, | |
} | |
def find_class(self, module: str, name: str) -> Any: | |
if not module.startswith('torch'): | |
return super().find_class(module, name) | |
return self.CLASSES[(module, name)] | |
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: | |
zf = zipfile.ZipFile(outer_fp) | |
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] | |
assert len(pickle_paths) == 1, pickle_paths | |
pickle_fp = zf.open(pickle_paths[0], 'r') | |
unpickler = LazyUnpickler(pickle_fp, | |
data_base_path=pickle_paths[0][:-4], | |
zip_file=zf) | |
model = unpickler.load() | |
as_dict = dict(model.items()) | |
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) | |
SAFETENSORS_DATA_TYPES: Dict[str, DataType] = { | |
'BF16': DT_BF16, | |
'F16': DT_F16, | |
'F32': DT_F32, | |
'I32': DT_I32, | |
} | |
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: | |
header_size, = struct.unpack('<Q', fp.read(8)) | |
header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size)) | |
# Use mmap for the actual data to avoid race conditions with the file offset. | |
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) | |
byte_buf = mapped[8 + header_size:] | |
def convert(info: Dict[str, Any]) -> LazyTensor: | |
data_type = SAFETENSORS_DATA_TYPES[info['dtype']] | |
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] | |
shape: List[int] = info['shape'] | |
begin, end = info['data_offsets'] | |
assert 0 <= begin <= end <= len(byte_buf) | |
assert end - begin == math.prod(shape) * numpy_dtype.itemsize | |
buf = byte_buf[begin:end] | |
def load() -> UnquantizedTensor: | |
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) | |
description = f'safetensors begin={begin} end={end} type={data_type} path={path}' | |
return LazyTensor(load, shape, data_type, description) | |
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'} | |
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) | |
def must_read(fp: IO[bytes], length: int) -> bytes: | |
ret = fp.read(length) | |
if len(ret) < length: | |
raise Exception("unexpectedly reached end of file") | |
return ret | |
def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus: | |
magic = must_read(fp, 4)[::-1] | |
if magic in (b'ggmf', b'ggjt'): | |
version, = struct.unpack("i", must_read(fp, 4)) | |
assert version == 1 | |
else: | |
assert magic == b'ggml' | |
version = None | |
n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = struct.unpack('<7i', must_read(fp, 28)) | |
tokens: List[Tuple[bytes, float]] = [] | |
for i in range(n_vocab): | |
if i == 32000: | |
# HACK: GPT4All messed with the format without changing the magic | |
# number. Specifically, they changed the vocab section to contain | |
# `n_vocab - 1` tokens instead of `n_vocab` (i.e. omitting the | |
# extra pad token). Try to detect if we're reading a file like | |
# this. | |
orig_pos = fp.tell() | |
fp.seek(20, io.SEEK_CUR) | |
is_gpt4all = fp.read(21) == b'tok_embeddings.weight' | |
fp.seek(orig_pos) | |
if is_gpt4all: | |
break | |
length, = struct.unpack("i", must_read(fp, 4)) | |
text = must_read(fp, length) | |
if magic != b'ggml': | |
score, = struct.unpack("f", must_read(fp, 4)) | |
tokens.append((text, score)) | |
vocab = GGMLVocab(tokens) if magic != b'ggml' else None | |
model: LazyModel = {} | |
# Use mmap for the actual data to avoid race conditions with the file offset. | |
off = fp.raw.tell() | |
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) | |
fp.raw.seek(off) # needed on Windows | |
def read_tensor() -> None: # this is a function so that variables captured in `load` don't change | |
shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12)) | |
assert 0 <= shape_len <= 3 | |
shape: List[int] = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len))) | |
shape = shape[::-1] | |
name = must_read(fp, name_len).decode('utf-8') | |
data_type = FTYPE_TO_DATA_TYPE[ftype] | |
if magic == b'ggjt': | |
fp.seek((fp.tell() + 31) & -32) | |
if data_type == DT_Q4_1: | |
# See GPTQForLLaMaQuantizedTensor.ggml_ndarray() | |
size = 24 * (shape[1] // 32) * shape[0] | |
elif data_type == DT_Q4_0: | |
size = 20 * (shape[1] // 32) * shape[0] | |
else: | |
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] | |
elm_count = math.prod(shape) | |
size = elm_count * numpy_dtype.itemsize | |
offset = fp.tell() | |
buf = mapped[offset:offset+size] | |
fp.seek(size, io.SEEK_CUR) | |
def load() -> Tensor: | |
if isinstance(data_type, QuantizedDataType): | |
ndarray = np.frombuffer(buf, dtype=np.uint32) | |
return GGMLQuantizedTensor(ndarray, shape, data_type) | |
else: | |
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) | |
description = f'ggml offset={offset} type={data_type} path={path}' | |
model[name] = LazyTensor(load, shape, data_type, description) | |
while fp.read(1) != b'': | |
fp.seek(-1, io.SEEK_CUR) | |
read_tensor() | |
return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab) | |
def lazy_load_file(path: Path) -> ModelPlus: | |
fp = open(path, 'rb') | |
first8 = fp.read(8) | |
fp.seek(0) | |
if first8[:2] == b'PK': | |
# A zip file, i.e. PyTorch format | |
return lazy_load_torch_file(fp, path) | |
elif first8[2:4] == b'gg': | |
# GGML format | |
return lazy_load_ggml_file(fp, path) | |
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024: | |
# Probably safetensors | |
return lazy_load_safetensors_file(fp, path) | |
else: | |
raise ValueError(f"unknown format: {path}") | |
In = TypeVar('In') | |
Out = TypeVar('Out') | |
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]: | |
'''Parallel map, but with backpressure. If the caller doesn't call `next` | |
fast enough, this will stop calling `func` at some point rather than | |
letting results pile up in memory. Specifically, there is a max of one | |
output value buffered per thread.''' | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures: List[concurrent.futures.Future[Out]] = [] | |
items_rev = list(iterable)[::-1] | |
for i in range(min(concurrency, len(items_rev))): | |
futures.append(executor.submit(func, items_rev.pop())) | |
while futures: | |
result = futures.pop(0).result() | |
if items_rev: | |
futures.append(executor.submit(func, items_rev.pop())) | |
yield result | |
def check_vocab_size(params: Params, vocab: Vocab) -> None: | |
if params.n_vocab != vocab.vocab_size: | |
# GGMLVocab comes from the same file as the model so shouldn't mismatch: | |
assert isinstance(vocab, SentencePieceVocab) | |
if params.n_vocab == vocab.vocab_size_base: | |
print("Ignoring added_tokens.json since model matches vocab size without it.") | |
vocab.added_tokens_list = [] | |
vocab.vocab_size = vocab.vocab_size_base | |
return | |
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}" | |
if vocab.fname_added_tokens is not None: | |
msg += f" combined with {vocab.fname_added_tokens}" | |
msg += f" has {vocab.vocab_size})." | |
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None: | |
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." | |
raise Exception(msg) | |
class OutputFile: | |
def __init__(self, fname_out: Path) -> None: | |
self.fout = open(fname_out, "wb") | |
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None: | |
self.fout.write(b"ggjt"[::-1]) # magic | |
values = [ | |
1, # file version | |
params.n_vocab, | |
params.n_embd, | |
params.n_mult, | |
params.n_head, | |
params.n_layer, | |
params.n_embd // params.n_head, # rot (obsolete) | |
file_type.value, | |
] | |
self.fout.write(struct.pack("i" * len(values), *values)) | |
def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None: | |
sname = name.encode('utf-8') | |
self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type])) | |
self.fout.write(struct.pack("i" * len(shape), *shape[::-1])) | |
self.fout.write(sname) | |
self.fout.seek((self.fout.tell() + 31) & -32) | |
def write_vocab(self, vocab: Vocab) -> None: | |
for text, score in vocab.all_tokens(): | |
self.fout.write(struct.pack("i", len(text))) | |
self.fout.write(text) | |
self.fout.write(struct.pack("f", score)) | |
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: | |
of = OutputFile(fname_out) | |
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0) | |
of = OutputFile(fname_out) | |
of.write_file_header(params, file_type=GGMLFileType.AllF32) | |
of.write_vocab(vocab) | |
of.fout.close() | |
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None: | |
check_vocab_size(params, vocab) | |
of = OutputFile(fname_out) | |
of.write_file_header(params, file_type) | |
print("Writing vocab...") | |
of.write_vocab(vocab) | |
def do_item(item: Tuple[str, LazyTensor]) -> NDArray: | |
name, lazy_tensor = item | |
return lazy_tensor.load().to_ggml().ndarray | |
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) | |
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): | |
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) | |
padi = len(str(len(model))) | |
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}") | |
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type) | |
ndarray.tofile(of.fout) | |
of.fout.close() | |
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType: | |
wq_type = model["layers.0.attention.wq.weight"].data_type | |
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)): | |
return GGMLFileType.AllF32 | |
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): | |
return GGMLFileType.MostlyF16 | |
if output_type_str == "q4_1" or (output_type_str is None and isinstance(wq_type, QuantizedDataType) and | |
wq_type.have_addends): | |
if isinstance(model["output.weight"].data_type, QuantizedDataType): | |
return GGMLFileType.MostlyQ4_1 | |
else: | |
return GGMLFileType.PerLayerIsQ4_1 | |
if output_type_str == "q4_0" or (output_type_str is None and isinstance(wq_type, QuantizedDataType)): | |
return GGMLFileType.MostlyQ4_0 | |
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} | |
raise Exception(f"Unexpected combination of types: {name_to_type}") | |
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel: | |
model = handle_quantization(model) | |
if "lm_head.weight" in model: | |
model = convert_transformers_to_orig(model, params) | |
model = filter_and_sort_tensors(model) | |
return model | |
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: | |
return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) | |
for (name, tensor) in model.items()} | |
def nth_multifile_path(path: Path, n: int) -> Optional[Path]: | |
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | |
the nth path in the model. | |
''' | |
# Support the following patterns: | |
patterns: List[Tuple[str, str]] = [ | |
# - x.00.pth, x.01.pth, etc. | |
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), | |
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. | |
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), | |
# x.bin, x.bin.1, etc. | |
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') | |
] | |
for regex, replacement in patterns: | |
if re.search(regex, path.name): | |
new_path = path.with_name(re.sub(regex, replacement, path.name)) | |
if new_path.exists(): | |
return new_path | |
return None | |
def find_multifile_paths(path: Path) -> List[Path]: | |
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | |
the whole list of paths in the model. | |
''' | |
ret: List[Path] = [] | |
for i in itertools.count(): | |
nth_path = nth_multifile_path(path, i) | |
if nth_path is None: | |
break | |
ret.append(nth_path) | |
if not ret: | |
# No matches. This should only happen if the file was named, e.g., | |
# foo.0, and there was no file named foo. Oh well, try to process it | |
# as a single file. | |
return [path] | |
return ret | |
def load_some_model(path: Path) -> ModelPlus: | |
'''Load a model of any supported format.''' | |
# Be extra-friendly and accept either a file or a directory: | |
if path.is_dir(): | |
# Check if it's a set of safetensors files first | |
files = list(path.glob("model-00001-of-*.safetensors")) | |
if not files: | |
# Try the PyTorch patterns too, with lower priority | |
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] | |
files = [file for glob in globs for file in path.glob(glob)] | |
if not files: | |
# Try GGML too, but with lower priority, since if both a non-GGML | |
# model and a GGML model exist in the same directory, we assume the | |
# latter was converted from the former. | |
files = list(path.glob("ggml-model*.bin*")) | |
if not files: | |
raise Exception(f"Can't find model in directory {path}") | |
if len(files) > 1: | |
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}") | |
path = files[0] | |
paths = find_multifile_paths(path) | |
models_plus: List[ModelPlus] = [] | |
for path in paths: | |
print(f"Loading model file {path}") | |
models_plus.append(lazy_load_file(path)) | |
model_plus = merge_multifile_models(models_plus) | |
return model_plus | |
def filter_and_sort_tensors(model: LazyModel) -> LazyModel: | |
return {name: model[name] for name in TENSORS_LIST if name in model} | |
def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab: | |
print(f"vocabtype: {vocabtype}") | |
# Be extra-friendly and accept either a file or a directory. Also, if it's | |
# a directory, it might be the model directory, and tokenizer.model might | |
# be in the parent of that. | |
if path.is_dir(): | |
vocab_file = "tokenizer.model" | |
if vocabtype == 'bpe': | |
vocab_file = "vocab.json" | |
path2 = path / vocab_file | |
# Use `.parent` instead of /.. to handle the symlink case better. | |
path3 = path.parent / vocab_file | |
if path2.exists(): | |
path = path2 | |
elif path3.exists(): | |
path = path3 | |
else: | |
raise FileNotFoundError( | |
f"Could not find tokenizer.model in {path} or its parent; " | |
"if it's in another directory, pass the directory as --vocab-dir") | |
added_tokens_path = path.parent / "added_tokens.json" | |
print(f"Loading vocab file {path}") | |
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None, | |
vocabtype) | |
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path: | |
namestr = { | |
GGMLFileType.AllF32: "f32", | |
GGMLFileType.MostlyF16: "f16", | |
GGMLFileType.MostlyQ4_0: "q4_0", | |
GGMLFileType.MostlyQ4_1: "q4_1", | |
GGMLFileType.PerLayerIsQ4_1: "q4_1", | |
}[file_type] | |
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" | |
if ret in model_paths: | |
sys.stderr.write( | |
f"Error: Default output path ({ret}) would overwrite the input. " | |
"Please explicitly specify a path using --outfile.\n") | |
sys.exit(1) | |
return ret | |
def do_dump_model(model_plus: ModelPlus) -> None: | |
print(f"model_plus.paths = {model_plus.paths!r}") | |
print(f"model_plus.format = {model_plus.format!r}") | |
print(f"model_plus.vocab = {model_plus.vocab!r}") | |
for name, lazy_tensor in model_plus.model.items(): | |
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") | |
def main(args_in: Optional[List[str]] = None) -> None: | |
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") | |
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") | |
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") | |
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | |
parser.add_argument("--outtype", choices=["f32", "f16", "q4_1", "q4_0"], help="output format (default: based on input)") | |
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") | |
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | |
parser.add_argument("model", type=Path, | |
help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") | |
parser.add_argument("--vocabtype", default='spm', choices=["spm", "bpe"], help="vocab format (default: spm)") | |
args = parser.parse_args(args_in) | |
vocab: Vocab | |
if args.dump_single: | |
model_plus = lazy_load_file(args.model) | |
do_dump_model(model_plus) | |
elif args.vocab_only: | |
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype) | |
assert args.outfile, "need --outfile if using --vocab-only" | |
outfile = args.outfile | |
OutputFile.write_vocab_only(outfile, vocab) | |
print(f"Wrote {outfile}") | |
else: | |
model_plus = load_some_model(args.model) | |
if args.dump: | |
do_dump_model(model_plus) | |
return | |
if model_plus.vocab is not None and args.vocab_dir is None: | |
vocab = model_plus.vocab | |
else: | |
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent | |
vocab = load_vocab(vocab_dir, args.vocabtype) | |
params = Params.load(model_plus) | |
model = model_plus.model | |
model = do_necessary_conversions(model, params) | |
output_type = pick_output_type(model, args.outtype) | |
model = convert_to_output_type(model, output_type) | |
outfile = args.outfile or default_outfile(model_plus.paths, output_type) | |
OutputFile.write_all(outfile, params, output_type, model, vocab) | |
print(f"Wrote {outfile}") | |
if __name__ == '__main__': | |
main() | |