Koboldcpp / otherarch /llama_v2.h
Illumotion's picture
Upload folder using huggingface_hub
3e5595b
raw
history blame
14.1 kB
#ifndef LLAMA_V2_H
#define LLAMA_V2_H
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef LLAMA_V2_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_V2_BUILD
# define LLAMA_V2_API __declspec(dllexport)
# else
# define LLAMA_V2_API __declspec(dllimport)
# endif
# else
# define LLAMA_V2_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_V2_API
#endif
#define LLAMA_V2_FILE_VERSION 3
#define LLAMA_V2_FILE_MAGIC 'ggjt'
#define LLAMA_V2_FILE_MAGIC_UNVERSIONED 'ggml'
#define LLAMA_V2_SESSION_MAGIC 'ggsn'
#define LLAMA_V2_SESSION_VERSION 1
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_v2_context;
typedef int llama_v2_token;
typedef struct llama_v2_token_data {
llama_v2_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} llama_v2_token_data;
typedef struct llama_v2_token_data_array {
llama_v2_token_data * data;
size_t size;
bool sorted;
} llama_v2_token_data_array;
typedef void (*llama_v2_progress_callback)(float progress, void *ctx);
struct llama_v2_context_params {
int n_ctx; // text context
int n_gpu_layers; // number of layers to store in VRAM
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_v2_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
// called with a progress value between 0 and 1, pass NULL to disable
llama_v2_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
};
// model file types
enum llama_v2_ftype {
LLAMA_V2_FTYPE_ALL_F32 = 0,
LLAMA_V2_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
LLAMA_V2_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_V2_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
};
LLAMA_V2_API struct llama_v2_context_params llama_v2_context_default_params();
LLAMA_V2_API bool llama_v2_mmap_supported();
LLAMA_V2_API bool llama_v2_mlock_supported();
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_V2_API struct llama_v2_context * llama_v2_init_from_file(
const char * path_model,
struct llama_v2_context_params params);
// Frees all allocated memory
LLAMA_V2_API void llama_v2_free(struct llama_v2_context * ctx);
// TODO: not great API - very likely to change
// Returns 0 on success
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
LLAMA_V2_API int llama_v2_model_quantize(
const char * fname_inp,
const char * fname_out,
enum llama_v2_ftype ftype,
int nthread);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_V2_API int llama_v2_apply_lora_from_file(
struct llama_v2_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_V2_API int llama_v2_get_kv_cache_token_count(const struct llama_v2_context * ctx);
// Sets the current rng seed.
LLAMA_V2_API void llama_v2_set_rng_seed(struct llama_v2_context * ctx, int seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_V2_API size_t llama_v2_get_state_size(const struct llama_v2_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_V2_API size_t llama_v2_copy_state_data(struct llama_v2_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_V2_API size_t llama_v2_set_state_data(struct llama_v2_context * ctx, const uint8_t * src);
// Save/load session file
LLAMA_V2_API bool llama_v2_load_session_file(struct llama_v2_context * ctx, const char * path_session, llama_v2_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_V2_API bool llama_v2_save_session_file(struct llama_v2_context * ctx, const char * path_session, const llama_v2_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_V2_API int llama_v2_eval(
struct llama_v2_context * ctx,
const llama_v2_token * tokens,
int n_tokens,
int n_past,
int n_threads);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_V2_API int llama_v2_tokenize(
struct llama_v2_context * ctx,
const char * text,
llama_v2_token * tokens,
int n_max_tokens,
bool add_bos);
std::vector<llama_v2_token> legacy_llama_v2_tokenize(struct llama_v2_context * ctx, const std::string & text, bool add_bos);
LLAMA_V2_API int llama_v2_n_vocab(const struct llama_v2_context * ctx);
LLAMA_V2_API int llama_v2_n_ctx (const struct llama_v2_context * ctx);
LLAMA_V2_API int llama_v2_n_embd (const struct llama_v2_context * ctx);
// Token logits obtained from the last call to llama_v2_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_V2_API float * llama_v2_get_logits(struct llama_v2_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_V2_API float * llama_v2_get_embeddings(struct llama_v2_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_V2_API const char * llama_v2_token_to_str(const struct llama_v2_context * ctx, llama_v2_token token);
// Special tokens
LLAMA_V2_API llama_v2_token llama_v2_token_bos();
LLAMA_V2_API llama_v2_token llama_v2_token_eos();
LLAMA_V2_API llama_v2_token llama_v2_token_nl();
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_V2_API void llama_v2_sample_repetition_penalty(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_V2_API void llama_v2_sample_frequency_and_presence_penalties(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_V2_API void llama_v2_sample_softmax(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_V2_API void llama_v2_sample_top_k(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_V2_API void llama_v2_sample_top_p(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_V2_API void llama_v2_sample_tail_free(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_V2_API void llama_v2_sample_typical(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep);
LLAMA_V2_API void llama_v2_sample_temperature(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float temp);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_v2_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_V2_API llama_v2_token llama_v2_sample_token_mirostat(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_v2_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_V2_API llama_v2_token llama_v2_sample_token_mirostat_v2(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_V2_API llama_v2_token llama_v2_sample_token_greedy(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_V2_API llama_v2_token llama_v2_sample_token(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates);
// Performance information
LLAMA_V2_API void llama_v2_print_timings(struct llama_v2_context * ctx);
LLAMA_V2_API void llama_v2_reset_timings(struct llama_v2_context * ctx);
// Print system information
LLAMA_V2_API const char * llama_v2_print_system_info(void);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_V2_API_INTERNAL
#include <vector>
#include <string>
struct ggml_v2_tensor;
std::vector<std::pair<std::string, struct ggml_v2_tensor *>>& llama_v2_internal_get_tensor_map(struct llama_v2_context * ctx);
#endif
#endif // LLAMA_V2_H